1. Các nghiệm của phương trình \(\sqrt{3}sin2x-cos2x-2=0\) là?
2. Hàm số \(y=2cos3x+3sin3x-2\) có tất cả bao nhiêu giá trị nguyên dương?
3. Tìm tham số m để phương trình \(msinx-cosx=\sqrt{5}\) có nghiệm
Giúp mk với ạ!
1, Phương trình tương đương
\(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)
⇔ \(sin\left(2x-\dfrac{\pi}{6}\right)=1\)
⇔ \(2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k.2\pi\)
⇔ x = \(\dfrac{\pi}{3}+k.\pi\)
2, \(2cos3x+3sin3x-2\)
= \(\sqrt{13}\)\((\dfrac{2}{\sqrt{13}}cos3x+\dfrac{3}{\sqrt{13}}sin3x)\) - 2
Do \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{3}{\sqrt{13}}\right)^2=1\) nên tồn tại 1 góc a sao cho \(\left\{{}\begin{matrix}sina=\dfrac{2}{\sqrt{13}}\\cosa=\dfrac{2}{\sqrt{13}}\end{matrix}\right.\)
BT = \(\sqrt{13}sin\left(x+a\right)-2\)
Do - 1 ≤ sin (x + a) ≤ 1 với mọi x và a
⇒ \(-\sqrt{13}-2\le BT\le\sqrt{13}-2\)
⇒ \(-5,6< BT< 1,6\)
Vậy BT nhận 5 giá trị nguyên trong tập hợp S = {-5 ; -4 ; -3 ; -2 ; -1}
3. \(msinx-cosx=\sqrt{5}\)
⇔ \(\dfrac{m}{\sqrt{m^2+1}}.sinx-\dfrac{1}{\sqrt{m^2+1}}.cosx=\dfrac{\sqrt{5}}{\sqrt{m^2+1}}\)
⇔ sin(x - a) = \(\sqrt{\dfrac{5}{m^2+1}}\) với \(\left\{{}\begin{matrix}sina=\dfrac{1}{\sqrt{m^2+1}}\\cosa=\dfrac{m}{\sqrt{m^2+1}}\end{matrix}\right.\)
Điều kiện có nghiệm : \(\left|\sqrt{\dfrac{5}{m^2+1}}\right|\le1\)
⇔ m2 + 1 ≥ 5
⇔ m2 - 4 ≥ 0
⇔ \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Cho phương trình 3 tan x + 1 sin x + 2 cos x = m s i n x + 3 cos x Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2018] để phương trình trên có nghiệm duy nhất x ϵ (0;π/2) ?
A. 2018
B. 2015
C. 4036
D. 2016
Tìm tất cả các giá trị thực của tham số m để phương trình y = 5 cos x − m sin x = m + 1 có nghiệm
A. m ≤ 12
B. m ≤ − 13
C. m ≤ 24
D. m ≥ 24
Cho phương trình sin x + 1 sin 2 x − m sin x = m cos 2 x . Tìm tập tất cả các giá trị thực của tham số m để phương trình có nghiệm trên khoảng 0 ; π 6
A. S = 0 ; 3 2
S. S = 0 ; 1
C. S = 0 ; 1 2
D. S = - 1 ; 3 2
Đáp án A
Phương pháp giải:
Biến đổi công thức lượng giác, đưa phương trình bài cho về dạng phương trình cơ bản, kết hợp với điều kiện nghiệm để tìm giá trị của tham số m
Lời giải:
Tìm tất cả các giá trị thực của tham số m để hàm số y = sin 2 x - 3 cos 2 x - m sin x - 1 đông biến trên đoạn 0 ; π 2
A. m > -3
B. m ≤ 0
C. m ≤ -3
D. m > 0
Tìm tất cả các giá trị thực của tham số m để hàm số y = sin 3 x - 3 cos 2 x - m sin x - 1 đồng biến trên đoạn [0; π 2 ].
A. .
B. .
C. .
D. .
Chọn B.
Đặt
Xét hàm số
Ta có
Để hàm số đồng biến trên cần:
Xét hàm số
Bảng biến thiên
Nhìn vào bảng biến thiên ta thấy với thì hàm số đồng biến trên , hàm số đồng biến trên đoạn .
Tìm tất cả các giá trị thực của tham số m để hàm số y = sin 3 x - 3 cos 2 x - m sin x - 1 đồng biến trên đoạn 0 ; π 2
A. m > -3
B. m ≤ 0
C. m ≤ - 3
D. m > 0
Đáp án B
Đặt t = sin x ⇒ t ' = c o s x ≥ 0 ; ∀ c ∈ 0 ; π 2 suy ra 0 ≤ t ≤ 1
Khi đó bài toán trở thành :Tìm m để hàm số f t = t 3 + 3 t 2 - m t - 4 đồng biến trên [0;1]
Ta có f ' t = 3 t 2 + 6 t - m ≥ 0 ⇔ m ≤ 3 t 2 + 6 t ; ∀ t ∈ 0 ; 1 ⇔ m ≤ m i n 0 ; 1 g t = 3 t 2 + 6 t
Xét hàm số trên , suy ra m i n 0 ; 1 g t = g 0 = 0 . Vậy m ≤ 0
Tìm tất cả các giá trị của tham số m để phương trình msinx - mcosx = 2 vô nghiệm
\(msinx-mcosx=2\)
Phương trình có nghiệm:
\(\Leftrightarrow m^2+\left(-m\right)^2\ge2^2\)
\(\Leftrightarrow2m^2-4\ge0\Rightarrow\)\(\left[{}\begin{matrix}x\le-\sqrt{2}\\x\ge\sqrt{2}\end{matrix}\right.\)
Phương trình vô nghiệm
\(\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)
Tìm tất cả các giá trị của tham số m để pt có nghiệm :
a. sinx - cosx = m
b. sinx - (2m-1)cosx = m+2