Chứng minh rằng:
(192019)2020-72020⋮10
A=3 mũ 2022-2 mũ 2022+3 mũ 2020-2 mũ 2020. Chứng minh rằng A chia hết cho 10
\(A=3^{2022}-2^{2022}+3^{2020}-2^{2020}\\=(3^{2022}+3^{2020})-(2^{2022}+2^{2020})\\=3^{2020}\cdot(3^2+1)-2^{2020}\cdot(2^2+1)\\=3^{2020}\cdot10-2^{2019}\cdot2\cdot5\\=3^{2020}\cdot10-2^{2019}\cdot10\)
Ta có: \(\left\{{}\begin{matrix}3^{2020}\cdot10⋮10\\2^{2019}\cdot10⋮10\end{matrix}\right.\)
\(\Rightarrow3^{2020}\cdot10-2^{2019}\cdot10⋮10\)
hay \(A⋮10\) (đpcm)
\(\text{#}Toru\)
chứng minh rằng số a=10^2020+458/18 là số tự nhiên
10^2020+458/18
suy ra 10^2.10^2......10^2+458/18
Vì số 10^2 là số dương nên 10^2.10^2......10^2.10^2 là số dương
suy ra 458/18=25,44444444444 nên công thức trên k ra số tự nhiên
suy ra bạn ra đề sai
☯
cho a=2020+2020^2+2022^3+...+2020^2 chứng minh rằng Achia hết cho 2023
Biểu thức A viết có vẻ không đúng. Bạn xem lại đề.
Chứng tỏ A=70+71+72+73+.....+72020+72021 chia hết cho 8
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
a,Cho M= 2020+20202+...+202010
Chứng minh M : 2021 dư 0
b, Cho A= 2021+20212+...+20212020
Chứng minh A:2022 dư 0
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
Chứng minh rằng :
A=\(9\left(\frac{1}{10!}+\frac{1}{11!}+\frac{1}{12!}+...+\frac{1}{2020!}\right)< \frac{1}{9!}\)
Cho B 1.2.3.....2020.(1+1/2+1/3+........+1/2020) Chứng minh rằng B chia hết cho 2021.
giúp mình nhé
chứng minh rằng
a)102019 +5 chia hết cho 3
b)(72020-32024) chia hết cho 10
cho a/b=c/d . Chứng minh rằng:
a) (a+2c).(b+d)=(a+c).(b+2d)
b) a^2020+b^2020/c^2020+d^2020=(a+b)^2020/(c+d)^2020