Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Vương Nguyễn Bá
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 1 2022 lúc 21:27

Bài 3: 

Gọi độ dài hai cạnh góc vuông lần lượt là a,b

Theo đề, ta có: a/8=b/15

Đặt a/8=b/15=k

=>a=8k; b=15k

Ta có: \(a^2+b^2=51^2\)

\(\Leftrightarrow289k^2=2601\)

=>k=3

=>a=24; b=45

Bài 6: 

Xét ΔABC có \(10^2=8^2+6^2\)

nên ΔABC vuông tại A

Lê Phương Mai
22 tháng 1 2022 lúc 21:29

Refer:

2, 

Ta có:AH là đường cao ΔABC

⇒AH ⊥ BC tại H

⇒∠AHB=∠AHC=90°

⇒ΔAHB và ΔAHC là Δvuông H

Xét ΔAHB vuông H có:

     AH² + HB²=AB²(Py)

⇔24² + HB²=25²

⇔         HB²=25² - 24²

⇔         HB²=49

⇒         HB=7(đvđd)

Chứng minh tương tự:HC=10(đvđd)

Ta có:BC=BH + CH=7 + 10=17(đvđd)

Dr.STONE
22 tháng 1 2022 lúc 21:34

Bài 2:

Xét tam giác ABH vuông tại H có:

AH2+BH2=AB2(định lí Py-ta-go)

=>242+BH2=252

=>BH2=252-242=49

=>BH=7

Xét tam giác ACH vuông tại H có:

AH2+CH2=AC2(định lí Py-ta-go)

=>242+CH2=262

=>CH2=262-242=100

=>CH=10.

=>BC=BH+CH=10+7=17 (cm)

Bài 5: Ta có: 32+42=52

=> Tam giác ABC vuông (định lí Py-ta-go đảo)

 

 

 

Nguyễn Thiên An
Xem chi tiết
phạm thảo vân linh
Xem chi tiết
le mi duyen
Xem chi tiết
Hoàng Lê Minh
11 tháng 1 2018 lúc 21:05

Theo bài ra ta có: Độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Nên ta có:

\(\frac{AB}{3}=\frac{AC}{4}\) \(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2\) \(\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

Theo định lí Py-ta-go, tam giác vuông ABC có cạnh huyền BC \(\Rightarrow AB^2+AC^2=BC^2=4^2=16\) 

                                          Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

                                                \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{16}{25}\)

                                        \(\Rightarrow\frac{AB^2}{9}=\frac{16}{25}\Rightarrow AB^2=5,76\Rightarrow AB=2,4\left(cm\right)\) 

                                             \(\frac{AC^2}{16}=\frac{16}{25}\Rightarrow AC^2=10,24\Rightarrow AC=3,2\left(cm\right)\)     

                                           Vậy AB = 2,4 cm

                                                  AC = 3,2 cm

                                                  BC = 4 cm                     

Baozi exo
Xem chi tiết
Kênh toán 7
Xem chi tiết
Phạm Nguyễn Tất Đạt
17 tháng 12 2016 lúc 15:09

Gọi cạnh thứ 1,2,3 lần lượt là a,b,c

Ta có:\(\frac{a}{1}=\frac{b}{2},3b=4c\) và a+b+c=36

\(\Rightarrow\frac{a}{1}=\frac{b}{2},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{2+4+3}=\frac{36}{9}=4\)(T/C...)

\(\Rightarrow a=4\cdot2=8,b=4\cdot4=16,c=4\cdot3=12\)

Vậy độ dài cạnh thứ 1,2,3 lần lượt là:8m,16m,12m

 

Nnb Vũ Gia
4 tháng 1 2021 lúc 14:52

wwwwđvvvvvvvvvvvvvvvvvhui

 

quang ngueyn
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
13 tháng 3 2023 lúc 6:48

Gọi các cạnh của tam giác lần lượt là `x,y,z (x,y,z \ne 0)`

Các cạnh của tam giác lần lượt tỉ lệ với `2:4:5`

Nghĩa là: `x/2=y/4=z/5`

Chu vi các cạnh của tam giác là `44 cm`

`-> x+y+z=44`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2=y/4=z/5=(x+y+z)/(2+4+5)=44/11=4`

`=>`\(\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{4}=4\\\dfrac{z}{5}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=4\cdot4=16\\z=4\cdot5=20\end{matrix}\right.\)

Vậy, các cạnh của tam giác lần lượt là `8 cm, 16 cm, 20 cm.`

animepham
13 tháng 3 2023 lúc 7:35

Gọi các cạnh của tam giác lần lượt là `a,b,c `tỉ lệ với `2,4,5 (cm)`

   

      `a/2 = b/4 =c/5 ` và ` a+b+c = 44 `

 

 Áp dụng tính chất dãy tỉ số bằng nhau : 

 

 `a/2=b/4=c/5 = (a+b+c)/(2+4+5)=44/11 = 4`

Do đó : 

`a/2 = 4 => 2.4 = 8 `

 

`b/4 = 4=> 4.4 = 16 `

 

`c/5 = 4 => 5.4 = 20`

 

Vậy các cạnh của tam giác lần lượt là : ` 8(cm) , 16(cm) , 20(cm)`

Nguyễn Thị Chi
Xem chi tiết
Nguyễn Huy Tú
19 tháng 11 2016 lúc 20:23

Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )

Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)

+) \(\frac{a}{5}=5\Rightarrow a=25\)

+) \(\frac{b}{4}=5\Rightarrow b=20\)

+) \(\frac{c}{3}=5\Rightarrow c=15\)

Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm

 

Kirigawa Kazuto
19 tháng 11 2016 lúc 20:12

Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)

Theo đề bài , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)

=> \(\frac{c+10}{7}=\frac{c}{5}\)

=> 5(c + 10) = 7c

=> 5c + 50 = 7c

=> 50 = 2c

=> c = 25

=> a + b = 25 + 10 = 35

Áp dụng tính chất dãy tỉ số , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)

=> a = 3.5 = 15

b = 4.5 = 20

Lê Quang Tuấn
19 tháng 11 2016 lúc 20:31

Gọi các cạnh lần lượt là a ; b ; c ta có a/3 = b/4=c/5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/3 = b/4 = c/5 = \(\frac{b+c-a}{4+5-3}\) = 10/6 cm =5/3 cm

từ đó suy ra :

a/3 = 5/3 cm\(\Rightarrow\) a = 5 cm

b/4 = 5/3 cm \(\Rightarrow\) b = 5/3cm*4=20/3cm

c/5 = 5/3 cm\(\Rightarrow\) c = 5/3 cm *5 =25/3 cm

Vậy a = 5 cm;b = 20/3 cm ; c = 25/3 cm

Nguyễn Hữu Phúc
Xem chi tiết