Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
titanic
Xem chi tiết
alibaba nguyễn
9 tháng 12 2017 lúc 16:03

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

\(\Leftrightarrow a^2c+b^2a+c^2b=b^2c+c^2a+a^2b\)

\(\Leftrightarrow\left(b-a\right)\left(c-a\right)\left(c-b\right)=0\)

\(\Leftrightarrow a=b;b=c;c=a\)

Làm nốt nhé

lê văn hải
10 tháng 12 2017 lúc 12:57

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

\(\Leftrightarrow a^2c+b^2a+c^2b=b^2c+c^2a+a^2b\)

\(\Leftrightarrow\left(b-a\right)\left(c-a\right)\left(c-b\right)=0\)

\(\Leftrightarrow a=b;b=c;c=a\)

Ta thấy : mỗi số hạng đều xuất hiện 2 lần và chúng đều bằng nhau.

  Mà  tổng của  \(a+b+c=3\)

\(\Leftrightarrow a=1;b=1;c=1\)

Xem chi tiết
Lê Thị Thục Hiền
6 tháng 7 2021 lúc 14:14

1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)

Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)

Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)

\(\Rightarrow A=4\)

2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)

Nguyễn Ngọc Lộc
6 tháng 7 2021 lúc 14:09

Bài 2 :

a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy ...

b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

\(\Rightarrow y=3\)

Vậy ...

Nguyễn Minh Châu
Xem chi tiết

Bạn tham khảo link này:

https://olm.vn/hoi-dap/detail/58559568033.html

Chúc bạn học tốt

Forever 

Khách vãng lai đã xóa
Nguyễn Minh Châu
26 tháng 2 2020 lúc 20:35

cảm ơn bn nha!!!

Khách vãng lai đã xóa
tôi thích hoa hồng
Xem chi tiết
Quốc Anh Đinh
Xem chi tiết
Nguyễn Huy Tú
18 tháng 12 2016 lúc 17:51

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)

Có: \(2=\frac{1}{a+b+c}\Rightarrow a+b+c=\frac{1}{2}\)

Xét \(\frac{b+c+1}{a}=2\Rightarrow b+c+1=2a\)

\(\Rightarrow a+b+c+1=3a\)

\(\Rightarrow\frac{1}{2}+1=3a\)

\(\Rightarrow3a=\frac{3}{2}\)

\(\Rightarrow a=\frac{1}{2}\)

Xét \(\frac{a+c+2}{b}=2\Rightarrow a+c+2=2b\)

\(\Rightarrow a+b+c+2=3b\)

\(\Rightarrow\frac{1}{2}+2=3b\)

\(\Rightarrow\frac{5}{2}=3b\)

\(\Rightarrow b=\frac{5}{6}\)

Xét \(\frac{a+b-3}{c}=2\Rightarrow a+b-3=2c\)

\(\Rightarrow a+b+c-3=3c\)

\(\Rightarrow\frac{1}{2}-3=3c\)

\(\Rightarrow\frac{-5}{2}=3c\)

\(\Rightarrow c=\frac{-5}{6}\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\right)\)

Phạm Nguyễn Tất Đạt
18 tháng 12 2016 lúc 17:19

\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(T/C...)

\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}=0,5\)

\(\Rightarrow\frac{b+c+1}{a}=2\Rightarrow\frac{0,5-a+1}{a}=2\Rightarrow1,5-a=2a\Rightarrow a=\frac{1}{2}\)

\(\Rightarrow\frac{a+c+2}{b}=2\Rightarrow\frac{0,5-b+2}{b}=2\Rightarrow2,5-b=2b\Rightarrow b=\frac{5}{6}\)

\(\Rightarrow c=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)

 

Edogawa Conan
Xem chi tiết
Nguyệt
9 tháng 12 2018 lúc 14:46

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(vì a+b+c khác 0)

\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}\)

\(\frac{b+c+1}{a}=2\Rightarrow2a=b+c+1\Rightarrow3a=a+b+c+1\Rightarrow a=\frac{1}{2}\)

\(\frac{a+c+2}{b}=2\Rightarrow2b=a+c+2\Rightarrow3b=a+b+c+2\Rightarrow b=\frac{5}{6}\)

\(\frac{a+b-3}{c}=2\Rightarrow2c=a+b-3\Rightarrow3c=a+b+c-3\Rightarrow c=-\frac{5}{6}\)

Vậy \(a=\frac{1}{2},b=\frac{5}{6},c=-\frac{5}{6}\)

Triệu Nguyễn Gia Huy
Xem chi tiết
Tom Boy
25 tháng 10 2015 lúc 9:43

ta có

1/b+c +1/c+a +1/a+b=1/4

=>(a+b+c)(1/b+c + 1/c+a  +1/a+b)=a+b+c.1/4

=>a+b+c/b+c  + a+b+c/c+a  +a+b+c/a+b=1/4 (a+b+c =1)

=>1+a/b+c +1+b/c+a +1+c/a+b=1/4

=>a/b+c  +b/c+a  +c/a+b=-11/4

Trịnh Ngọc Thành
Xem chi tiết
Phạm Xuân Sơn
Xem chi tiết
Xyz OLM
12 tháng 1 2020 lúc 10:07

Ta có : \(\frac{a-b}{2a+b}=\frac{b-c}{b+c}=\frac{b+2c}{-a-b}\)

=> \(\frac{a-b+b-c+b+2c}{2a+b+b+c-a-b}=\frac{a+b+c}{a+b+c}=1=\frac{1}{a+b+c}\Rightarrow a+b+c=1\)

Khi đó \(\hept{\begin{cases}a-b=2a+b\\b-c=b+c\\b+2c=-a-b\end{cases}\Rightarrow\hept{\begin{cases}a=-2b\\c=0\end{cases}}}\)

Mặt khác a + b + c = 1

<=> -2b + b = 1

=> b = - 1

=>  a = 2

Vậy a = 2 ; b = - 1 ; c = 0

Khách vãng lai đã xóa
Phạm Xuân Sơn
12 tháng 1 2020 lúc 10:34

thank you nhưng bạn ơi còn trường hợp a+b+c=0 nữa

Khách vãng lai đã xóa
galaxyLâm
Xem chi tiết
Nguyễn Linh Chi
15 tháng 10 2020 lúc 12:28

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

Nếu a + b + c = 0 => a = b = c = 0 

Nếu a + b + c khác 0

Áp dụng dãy tỉ số bằng nhau 

\(\frac{a}{b+c-5}=\frac{b}{a+c+3}=\frac{c}{a+b+2}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)

=> \(\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\Rightarrow a+b+c=1\)

=> \(\hept{\begin{cases}b+c=1-a\\b+a=1-c\\a+c=1-b\end{cases}}\)

Khi đó ta có: \(\frac{a}{1-a-5}=\frac{b}{1-b+3}=\frac{c}{1-c+2}=\frac{1}{2}\)

=> \(\frac{a}{-a-4}=\frac{b}{-b+4}=\frac{c}{-c+3}=\frac{1}{2}\)

=> a = -4/3; b = 4/3; c = 1

Khách vãng lai đã xóa