Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vo Thanh Dat
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2022 lúc 19:20

Số hạng tổng quát của khai triển: \(C_7^k.x^k.2^{7-k}\)

Số hạng chứa \(x^5\Leftrightarrow k=5\)

Hệ số của số hạng đó là: \(C_7^5.2^2=...\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 5 2019 lúc 14:14

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2019 lúc 16:23

Đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 11 2019 lúc 11:21

Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 4 2023 lúc 23:28

Hệ số lớn nhất sẽ tương ứng với số hạng đứng chính giữa 

=>Hệ số lớn nhất là \(C^{51}_{101}\)

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 16:06

\(f\left(x\right)=\sum\limits^3_{i=0}C_3^i\left(x+x^2\right)^i.\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k\left(2x\right)^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}C_3^i.C_i^jx^j.\left(x^2\right)^{i-j}\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k.2^k.x^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}\sum\limits^{15}_{k=0}C_3^iC_i^jC_{15}^k\left(\dfrac{1}{4}\right)^{3-i}.2^k.x^{2i+k-j}\)

Số hạng chứa \(x^{13}\) thỏa mãn:

\(\left\{{}\begin{matrix}0\le i\le3\\0\le j\le i\\0\le k\le15\\2i+k-j=13\end{matrix}\right.\) 

\(\Rightarrow\left(i;j;k\right)=\left(0;0;13\right);\left(1;0;12\right);\left(1;1;11\right);\left(2;0;11\right);\left(2;1;10\right);\left(2;2;9\right);\left(3;0;10\right);\left(3;1;9\right)\)

\(\left(3;2;8\right);\left(3;3;7\right)\) (quá nhiều)

Hệ số....

Nguyễn Thị Thiên Kiều
Xem chi tiết
Nguyễn Đức Trung
11 tháng 4 2016 lúc 12:57

Theo công thức nhị thức Niu-tơn, ta có :

\(P=C_6^0\left(x-1\right)^6+C_6^1\left(x-1\right)^5+....+C_6^kx^{2k}\left(x-1\right)^{6-k}+....+C_6^5x^{10}\left(x-1\right)+C_6^6x^{12}\)

Suy ra, khi khai triển P thành đa thức, \(x^2\) chỉ xuất hiện khi khai triển \(C_6^0\left(x-1\right)^6\) và \(C_6^1\left(x-1\right)^5\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^0\left(x-1\right)^6\)  là : \(C_6^0.C_6^2\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^1\left(x-1\right)^5\)  là : \(-C_6^1.C_5^0\)

Vì vậy hệ số của  \(x^2\) trong khai triển P thành đa thức là : \(C_6^0.C_6^2-C_6^1.C_5^0=9\)

   

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 11 2017 lúc 2:32

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2018 lúc 6:28

James Pham
Xem chi tiết
Nguyễn Phúc Hưng
26 tháng 4 2023 lúc 21:44

Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)

\(=C^k_5.2^k.x^{k+1}\)

Mà ta cần tìm số hạng của x5

\(\Rightarrow k+1=5\Leftrightarrow k=4\)

Vậy số hạng của x5 là: \(C^4_5.2^4=80\)

Nguyễn Phúc Hưng
26 tháng 4 2023 lúc 21:55

Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển