Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Camthe Thi
Xem chi tiết
Nguyễn Đức Anh
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Khách vãng lai đã xóa
Phạm Mạnh Hùng
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Phạm Anh Tuấn
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 1 2017 lúc 16:13

Chọn A.

Huỳnh Kim Ngọc_12a10
Xem chi tiết
Lê Vĩnh đức
30 tháng 11 2023 lúc 20:45

loading...  loading...  

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:09

Bước 1: Mở trang Geoebra

Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô

Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).

Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:

x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.

Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y =  - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 11 2019 lúc 4:22

Ta có :  x2 – 4x + 4 =(x- 2)2

Do đó,để  x2 – 4x + 4 > 0

⇔ x - 2 ≠ 0 ⇔ x ≠ 2

Tập nghiệm của bất phương trình  là S = R\ {2}.

Chọn A

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 10:57

a) Ta có: \(2x + 3 \ge 0 \Leftrightarrow x \ge \frac{{ - 3}}{2}\)

\( \Rightarrow \) Tập hợp E là: \(E = \left\{ {x \in \mathbb{R}|x \ge \frac{{ - 3}}{2}} \right\}\)

và \( - x + 5 \ge 0 \Leftrightarrow x \le 5\)

\( \Rightarrow \) Tập hợp G là \(G = \left\{ {x \in \mathbb{R}|x \le 5} \right\}\)

\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x \ge \frac{{ - 3}}{2}\) và \(x \le 5\)} \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\}\)

Vậy tập hợp D \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\} = [\frac{{ - 3}}{2}; 5]\)

b) Ta có: \(x + 2 > 0 \Leftrightarrow x>-2\)

\( \Rightarrow E = \left\{ {x \in \mathbb{R}|x >-2 }\right\}\)

và \( 2x - 9 < 0 \Leftrightarrow x < \frac{9}{2}\)

\( \Rightarrow G = \left\{ {x \in \mathbb{R}|x < \frac{9}{2}} \right\}\)

\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x > -2 \) và \(x < \frac{9}{2}\)} \( = \left\{ {x \in \mathbb{R}|-2<x< {9\over 2} } \right\}\)

Vậy \( D= \left\{ {x \in \mathbb{R}|-2<x< {9\over 2}} \right\}=(-2;{9\over 2})\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2019 lúc 17:28

Nguyễn Văn Zui
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2022 lúc 19:08

\(\left(x^2+2x-3\right)\left(x-2\right)^2>=0\)

=>(x+3)(x-1)>=0

=>x>=1 hoặc x<=-3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 3 2019 lúc 5:00