Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Tìm tập nghiệm S của bất phương trình 3 x + 1 − 1 3 > 0.
A. − 1 ; + ∞ .
B. − ∞ ; − 2 .
C. − 2 ; + ∞ .
D. − ∞ ; − 1 .
Viết phương trình đường thẳng d đi qua điểm A(-4;-5;3) và cắt cả hai đường thẳng d 1 : x + 1 3 = y + 3 - 2 = z - 2 - 1 và d 2 : x - 2 2 = y + 1 3 = z - 1 - 5
A. x + 4 3 = y + 5 2 = z - 3 - 1
B. x + 4 5 = y + 5 4 = z - 3 7
C. x + 4 - 1 = y + 5 5 = z - 3 2
D. x + 4 - 2 = y + 5 3 = z - 3 2
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Tập nghiệm của bất phương trình 1 3 2 x − 1 ≥ 1 3 là
A. − ∞ ; 0
B. 0 ; 1
C. 1 ; + ∞
D. − ∞ ; 1
Tập nghiệm của bất phương trình 1 3 2 x - 1 ≥ 1 3 là
A. ( - ∞ ; 0 ]
B. (0;1]
C. [ 1 ; + ∞ )
D. ( - ∞ ; 1 ]
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = (a;b)\{x0}. Giá trị của a + b – x0 bằng:
A. 100
B. 30
C. 150
D. 50
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3