Tìm a để hàm số y = x + 2 − 2 x − 2 k h i x ≠ 2 a + 2 x k h i x = 2 liên tục tại x = 2.
A. 1
B. − 15 4
C. 1 4
D. 15 4
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến trên R thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số, ta được:
m+3=5
hay m=2
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
Cho hàm số y= F(x) = x×(x-2) và hàm số y= G(x) = -x+6
a) tính F(3); [ F(2/3) ]² ; G(-1/2)
b) tìm x để F(x)=0
c) tìm a để F(a)=G(a)
a: \(F\left(3\right)=3\left(3-2\right)=3\cdot1=3\)
\(\left[F\left(\dfrac{2}{3}\right)\right]^2=\left[\dfrac{2}{3}\cdot\left(\dfrac{2}{3}-2\right)\right]^2\)
\(=\left[\dfrac{2}{3}\cdot\dfrac{-4}{3}\right]^2=\left(-\dfrac{8}{9}\right)^2=\dfrac{64}{81}\)
\(G\left(-\dfrac{1}{2}\right)=-\left(-\dfrac{1}{2}\right)+6=6+\dfrac{1}{2}=\dfrac{13}{2}\)
b: F(x)=0
=>x(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c: F(a)=G(a)
=>\(a\left(a-2\right)=-a+6\)
=>\(a^2-2a+a-6=0\)
=>\(a^2-a-6=0\)
=>(a-3)(a+2)=0
=>\(\left[{}\begin{matrix}a-3=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)
a/ cho hàm số: y=(-3m - 2)x2. Tìm m để hàm số nghịch biến khi x < 0
b/ cho hàm số: y=(m2 - 2m + 3)x2. Xác định tính biến thiên của hàm số
c/ cho hàm số: y=(2m + 3)x2. Tìm m để hàm số đồng biến khi x>0
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
Cho hàm số y=( m - 1 ) x +m a) Tìm m để hàm số song song với trục hoành b) Tìm m để đồ thị hàm số đi qua điểm A(-1;1) c) Tìm m để đồ thị hàm số cắt trục hoành tại điểm A có hoành độ x=2- √3/2
a: Để (d)//Ox thì m-1=0
=>m=1
b: Thay x=-1 và y=1 vào (d), ta được:
-m+1+m=1
=>1=1(luôn đúng)
c: Thay x=\(\dfrac{2-\sqrt{3}}{2}\) và y=0 vào (d), ta đc:
\(\left(m-1\right)\cdot\dfrac{2-\sqrt{3}}{2}+m=0\)
=>\(\left(m-1\right)\cdot\left(2-\sqrt{3}\right)+2m=0\)
=>\(2m-\sqrt{3}m-2+\sqrt{3}+2m=0\)
=>\(m\left(4-\sqrt{3}\right)=2-\sqrt{3}\)
=>\(m=\dfrac{2-\sqrt{3}}{4-\sqrt{3}}\)
Cho hàm số y = (m-1)x + 2 (1)
a) Tìm m để hàm số (1) là hàm số đồng biến;
b) Tìm m để đồ thị hàm số (1) là đường thẳng song song với đường thẳng y = 2x;
c) Tìm m để đồ thị của hàm số (1) đồng quy với hai đường thẳng y-3= 0 và y = x-1
d) Chứng minh đồ thị hàm số (1) luôn đi qua điểm cố định với mọi m.
a: Để hàm số đồng biến thì m-1>0
hay m>1
Bài 1: Cho hàm số y= (m -3).x+m+2
a) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ = -3
b) Tìm m để đồ thị hàm số song song với đường thẳng y= -2x+1
c) Tìm m để đồ thị hàm số vuông góc với đường thẳng y= -2x-3
Bài 2: Đồ thị hàm số y= ax+b (a ≠ 0) và đường thẳng y = a'x+ b' ( b ≠ 0). Khi a.a'= -1
(mink đag cần gấp)
Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)
hay \(m\ne3\)
a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì
Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được:
\(\left(m-3\right)\cdot0+m+2=-3\)
\(\Leftrightarrow m+2=-3\)
hay m=-5(nhận)
b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì
\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1
Cho hàm số y=(m-2)x+m+3 (d)
a,tìm điều kiện của tham số m để hàm số luôn nghịch biến
b,Tìm m để d cắt trục hoành tại điểm có hoành độ bằng -3
c,tìm m để đồ thị hàm số y=-x+2,y=2x-1 và (d) đồng quy tại 1 điểm
a: Để hàm số nghịch biến trên R thì m-2<0
=>m<2
b: Thay x=-3 và y=0 vào (d), ta được:
-3(m-2)+m+3=0
=>-3m+6+m+3=0
=>-2m+9=0
=>-2m=-9
=>\(m=\dfrac{9}{2}\)
c: Tọa độ giao điểm của y=-x+2 và y=2x-1 là:
\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=-x+2\end{matrix}\right.\)
=>x=1 và y=-1+2=1
Thay x=1 và y=1 vào (d), ta được:
m+2+m+3=1
=>2m+5=1
=>2m=-4
=>m=-4/2=-2
Cho hàm số bậc nhất y=(m-2)x+ 5
a) Tìm các giá trị của m để hàm số y là hàm đồng biến
b) Tìm các giá trị của m để hàm số ý là hàm nghịch biến
a) Hàm số đồng biến trên R\(\Rightarrow a>0\Rightarrow m-2>0\Rightarrow m>2\)
b) Hàm số nghịch biến trên R
\(\Leftrightarrow a< 0\Rightarrow m-2< 0\Rightarrow m< 2\)