Hàm số y = x 3 3 - 3 2 x 2 + 1 nghịch biến trên khoảng nào?
A. (-1;3)
B. (-1;2)
C. (1;4)
D. (0;3)
1. Cho hàm số y =f(x) có đạo hàm f'(x) = (x^2 -1)(x-2)^2(x-3) . Hàm số đồng biến ; nghịch biến trên khoảng nào? 2. Cho hàm số y = x^4 -2x^2 . Hàm số đồng biến ; nghịch biến trên khoảng nào?
1.
\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)
Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)
2.
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)
Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)
Khoảng nghịch biến của hàm số y= 1/2x^4-3x^2-3 là gì các bạn?
Hàm số y= x^2/1-x đồng biến trên khoảng nào?
Hàm số y= x^3+3x^2 nghịch biến trên khoảng nào?
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
1. Hàm số y =2sinx+cos2x , x€ [0;π) đồng biến trên khoảng nào? 2. Hàm số y=|x^2-2x-3| nghịch buến trên khoảng nào?
1.
\(y'=2cosx-2sin2x=2cosx-4sinx.cosx=2cosx\left(1-2sinx\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}cosx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\\x=\dfrac{\pi}{6}\\x=\dfrac{5\pi}{6}\end{matrix}\right.\)
Hàm đồng biến trên các khoảng \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)
2.
Xét hàm \(f\left(x\right)=x^2-2x-3\)
\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
\(f'\left(x\right)=2x-2=0\Rightarrow x=1\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)
xét tính đồng biến nghịch biến của các hàm số trên
\(y=f\left(x\right)=x^2-2x+3\) trên khoảng \(_{\left(1;+\infty\right)}\)
y=f(x)=\(\sqrt{3-x}\) trên khoảng \(\left(-\infty;3\right)\)
1) tìm khoảng đồng biến nghịch biến \(y=\dfrac{x^2-6x+10}{x-3}\)
2) hàm số \(y=\dfrac{mx-4}{x-m}\) đồng biến trên khoảng (0,\(+\infty\))
1: TXĐ: D=R\{3}
\(y=\dfrac{x^2-6x+10}{x-3}\)
=>\(y'=\dfrac{\left(x^2-6x+10\right)'\left(x-3\right)-\left(x^2-6x+10\right)\left(x-3\right)'}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{\left(2x-6\right)\left(x-3\right)-\left(x^2-6x+10\right)}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{2x^2-12x+18-x^2+6x-10}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{x^2-6x+8}{\left(x-3\right)^2}\)
Đặt y'<=0
=>\(\dfrac{x^2-6x+8}{\left(x-3\right)^2}< =0\)
=>\(x^2-6x+8< =0\)
=>(x-2)(x-4)<=0
=>2<=x<=4
Vậy: Khoảng đồng biến là [2;3) và (3;4]
âu 48. Cho y=|x+1|+|x−2||x+1|+|x−2|và các mệnh đề
Câu 49. Hàm số y=-√|2x+3||2x+3| nghịch biến trên khoảng.
Cho hàm số f(x) có bảng biến thiên như sau:
Hàm số y = ( f ( x ) ) 3 - 3 ( f ( x ) ) 2 nghịch biến trên khoảng nào dưới đây?
A. (2;3).
B. (1;2).
C. (3;4).
D. (-∞;1).
Xét tính đồng biến, nghịch biến của hàm số trên các khoảng tương ứng
y = - 1 1 + x trên (-3; 2) và (2; 3)
Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây.
I. Hàm số đồng biến trên khoảng (-3;-2)
II. Hàm số đồng biến trên khoảng − ∞ ; 5 .
III. Hàm số nghịch biến trên khoảng − 2 ; + ∞ .
IV. Hàm số đồng biến trên khoảng - ∞ ; - 2
Số mệnh đề sai trong các mệnh đề trên là
A. 2.
B. 3.
C. 4.
D. 1.