tìm a,b để:
Cho A = [2 ; 4) ; B = ( - \(\infty\) ; m ]
a) Tìm m để A \(\cap\) B = \(\varnothing\)
b) Tìm m để A \(\cap\) B \(\ne\) \(\varnothing\)
c) Tìm m để A \(\subset\) B
*Cần gấp làm ơn giúp mình với*
\(A\cap B=\varnothing\Leftrightarrow m< 2\)
\(A\cap B\ne\varnothing\Leftrightarrow m\ge2\)
\(A\in B\Leftrightarrow m\ge4\)
Cho 2 tập hợp A=[m; m+2], m ϵ R
B= (5;6)
1/ Tìm m để A⊂B
2/ Tìm m để B⊂A
3/ Tìm m để A hợp B = rỗng
\(A\subset B\Leftrightarrow\left\{{}\begin{matrix}m>5\\m+2< 6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>5\\m< 4\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}5>m\\6< m+2\end{matrix}\right.\) \(\Leftrightarrow4< m< 5\)
\(B\ne\varnothing\Rightarrow A\cap B\ne\varnothing\) với mọi m \(\Rightarrow\) ko tồn tại m để A hợp B = rỗng (câu này là giao mới đúng)
Cho :
A =\(\sqrt{\dfrac{2x+3}{x-3}}\) , B = \(\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)
a) Tìm x để A có nghĩa
b) Tìm x để B có nghĩa
c) Tìm x để A = B
a: ĐKXĐ: \(\left[{}\begin{matrix}x\le-\dfrac{3}{2}\\x>3\end{matrix}\right.\)
b: ĐKXĐ: x>3
c: Ta có: A=B
\(\Leftrightarrow\sqrt{\dfrac{2x+3}{x-3}}=\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)
\(\Leftrightarrow0x=0\)(luôn đúng với mọi x>3)
a)Tìm số nguyên x để A= x4 - 9x4+ 21x2+ x + a B = x-2
b)Tìm số nguyên x để A= x4 - 10x3 + 21x2 + 8x + a B= x+2
c) Tìm số nguyên x để A= 2x3 - 3x2 + ax + b B= x2-2+2
a:
Sửa đề: A=x^4-9x^3+21x^2+x+a
A chia hết cho B
=>x^4-2x^3-7x^3+14x^2+7x^2-14x+15x-30+a+30 chia hết cho x-2
=>a+30=0
=>a=-30
b: A chia hết cho B
=>x^4+2x^3-12x^3-24x^2+45x^2+90x-82x-164+a+164 chia hết cho x+2
=>a+164=0
=>a=-164
a) Tìm các chữ số a để 2a3 ⋮ 9
b) Tìm các chữ số a và b để a4b ⋮ 2; 3; 5; 9
c)Tìm các chữ số a và b để 2a5b ⋮ 5;9
b) để a4b ⋮ 2 và 5
thì b=0
để a40 ⋮ 3 và 9 thì tổng các chữ số phải ⋮ 9
⇒ \(\left(a+4\right)\text{⋮}9\)
⇒ \(a=5\)
Vậy a=5, b=0
c) để 2a5b ⋮5 thì b=0 hoặc 5
Nếu b=0 thì a=2
Nếu b=5 thì a=7
Vậy (a,b)=\(\left\{\left(2;0\right);\left(7;5\right)\right\}\)
a) để 2a3 ⋮9
thì tổng các chữ số phải ⋮9
⇒ \(\left(2+a+3\right)\text{⋮}9\)
⇒ \(\left(a+5\right)\text{⋮}9\)
⇒ \(a=4\)
A)4 b)a là 5 b là 0 c) a là 2 b là 0
a, Tìm x để A nhận giá trị lớn nhất, tìm giá trị lớn nhất để A = 1001 - I x+9 I
b, Tìm x để B nhận giá trị nhỏ nhất , tìm giá trị nhỏ nhất để B = I x-2I + 34
Bài1. Cho biểu thức và với
a) Rút gọn A;
b) Với P = A.B, tìm x để
c) Tìm x để B < 1
d) Tìm số nguyên x để P = A.B là số nguyên.
Bài 2. Cho biểu thức
a) Rút gọn P;
b) Tìm các giá trị của x để
c) Tìm các giá trị nguyên của x để A > 1
Bài 3. Cho biểu thức
a) Tìm điều kiện xác định của P;
b) Rút gọn biểu thức P.
c) Tìm các giá trị của x để
d) Tìm các giá trị của x để P > 0; P < 0.
Cho A = [ -5 ; 11 ) và B = [ m ; m + 4 )
a) Tìm m để A \(\cap\) B = rỗng
b) Tìm m để A \(\cap\) B khác rỗng
a.
\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}m+4< -5\\m>11\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -9\\m>11\end{matrix}\right.\)
b.
\(A\cap B\ne\varnothing\Leftrightarrow-9\le m\le11\)
Bài 1: Cho phân thức: A= 2x^2-4x+8/x^3+8
a) Rút gọn A
b) Tính giá trị của A, biết |x| = 2
c) Tìm x để A = 2
d) Tìm x để A < 0
e) Tìm x thuộc Z để A có giá trị nguyên
Bài 2: Cho B= x^2-4x+4/x^2-4
a) Rút gọn B
b) Tính giá trị của B, biết |x-1| = 2
c) Tìm x để B = -1
d) Tìm x để B < 1
e) Tìm x thuộc Z để B nhận giá trị nguyên
Bài 1 :
a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
TH1 : Thay x = 2 vào biểu thức trên ta được :
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
TH2 : Thay x = -2 vào biểu thức trên ta được :
\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí
c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)
\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)
Vậy với x = -1 thì A = 2
d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)
\(\Rightarrow x+2< 0\)do 2 > 0
\(\Leftrightarrow x< -2\)
Vậy với A < 0 thì x < -2
e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
2.
ĐKXĐ : \(x\ne\pm2\)
a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)
Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3
c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)
<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)
d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)
e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }