Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
diệp hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 8:31

Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 12 2018 lúc 18:26

Nhung Phan Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 18:12

a: f(-2)=4+3=7

f(-1)=2+3=5

f(0)=3

f(1/2)=-1+3=2

f(-1/2)=1+3=4

b: g(-1)=1-1=0

f(0)=0-1=-1

Nguyễn Ngọc Thúy Vy
Xem chi tiết
Akai Haruma
31 tháng 1 2017 lúc 13:39

Lời giải:

Bài 1:

Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:

\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)

\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)

\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)

Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)

\(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)

\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)

Câu 2:

Áp dụng nguyên hàm từng phần như bài bạn đã đăng:

\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)

\(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)

\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 4 2019 lúc 8:12

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 6 2017 lúc 2:35

Đáp án A

Phương pháp: Công thức từng phần:  

Cách giải:

AllesKlar
Xem chi tiết
Akai Haruma
15 tháng 5 2022 lúc 0:23

Lời giải:
Đặt $\sqrt{x^2+1}+x=a$ thì:
$f(a)=e^a-e^{\frac{1}{a}}$

$f'(a)=e^a+\frac{1}{a^2}.e^{\frac{1}{a}}>0$ với mọi $a$

Do đó hàm $f(a)$ là hàm đồng biến hay $f(x)$ là hàm đồng biến trên R
$\Rightarrow f(x)> f(0)=0$ với mọi $x>0$

$\Rightarrow f(\frac{12}{m+1})>0$ với $m$ nguyên dương 

Do đó để $f(m-7)+f(\frac{12}{m+1})<0$ thì $f(m-7)<0$

$\Rightarrow m-7<0$

Mặt khác, dễ thấy: $f(x)+f(-x)=0$. Bây h xét:

$m=1$ thì $f(m-7)+f(\frac{12}{m+1})=f(-6)+f(6)=0$ (loại)

$m=2$ thì $f(m-7)+f(\frac{12}{m+1})=f(-5)+f(4)=f(4)-f(5)<0$ (chọn)

$m=3$ thì $f(m-7)+f(\frac{12}{m+1})=f(-4)+f(3)=f(3)-f(4)<0$ (chọn)

$m=4$ thì $f(m-7)+f(\frac{12}{m+1})=f(-3)+f(2,4)=f(2,4)-f(3)<0$ (chọn) 

$m=5$ thì $f(m-7)+f(\frac{12}{m+1})=f(-2)+f(2)=0$ (loại)

$m=6$ thì $f(m-7)+f(\frac{12}{m+1})=f(-1)+f(12/7)>f(-1)+f(1)=0$ (loại)

Vậy có 3 số tm

Minh Nguyệt
Xem chi tiết
Hồ Hiền Lương
Xem chi tiết
Nguyễn Thanh
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2019 lúc 22:55

Câu 1:

Lấy logarit cơ số tự nhiên 2 vế:

\(x.lny+e^y.x\ge y.lnx+y.e^x\)

\(\Leftrightarrow\frac{lny+e^y}{y}\ge\frac{lnx+e^x}{x}\)

Xét hàm \(f\left(t\right)=\frac{lnt+e^t}{t}\) với \(t>1\)

\(f'\left(t\right)=\frac{\left(e^t+\frac{1}{t}\right).t-lnt-e^t}{t^2}=\frac{t.e^t+1-e^t-lnt}{t^2}\)

Xét \(g\left(t\right)=t.e^t+1-e^t-lnt\Rightarrow g'\left(t\right)=e^t+t.e^t-e^t-\frac{1}{t}\)

\(g'\left(t\right)=t.e^t-\frac{1}{t}=\frac{t^2.e^t-1}{t}>0\) \(\forall t>1\)

\(\Rightarrow g\left(t\right)\) đồng biến \(\Rightarrow g\left(t\right)>g\left(1\right)=1>0\) \(\forall t>1\)

\(\Rightarrow f'\left(t\right)=\frac{g\left(t\right)}{t^2}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)\ge f\left(t_2\right)\Leftrightarrow t_1\ge t_2\)

\(\Rightarrow f\left(y\right)\ge f\left(x\right)\Leftrightarrow y\ge x\) \(\Rightarrow log_xy\ge1>0\)

\(P=log_x\left(xy\right)^{\frac{1}{2}}+log_yx=\frac{1}{2}\left(1+log_xy\right)+\frac{1}{log_xy}\)

\(P=\frac{1}{2}+\frac{1}{2}log_xy+\frac{1}{log_xy}\ge\frac{1}{2}+2\sqrt{\frac{log_xy}{2log_xy}}=\frac{1}{2}+\sqrt{2}\)

Nguyễn Việt Lâm
3 tháng 6 2019 lúc 23:00

\(f'\left(x\right)=\frac{1}{x-1}\Rightarrow\int f'\left(x\right)dx=\int\frac{1}{x-1}dx\)

\(\Rightarrow f\left(x\right)=ln\left|x-1\right|+C\)

\(\Rightarrow f\left(x\right)=\left\{{}\begin{matrix}ln\left|x-1\right|+C_1\left(x>1\right)\\ln\left|x-1\right|+C_2\left(x< 1\right)\end{matrix}\right.\)

\(f\left(0\right)=2018\Leftrightarrow2018=ln\left|0-1\right|+C_2\Rightarrow C_2=2018\)

\(f\left(2\right)=2019\Rightarrow2019=ln\left|2-1\right|+C_1\Rightarrow C_1=2019\)

\(\Rightarrow f\left(x\right)=\left\{{}\begin{matrix}ln\left|x-1\right|+2019\left(x>1\right)\\ln\left|x-1\right|+2018\left(x< 1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(3\right)=2019+ln2\\f\left(-1\right)=2018+ln2\end{matrix}\right.\) \(\Rightarrow S=1\)