Cho hàm số y = x 3 - 2 x + 1 có đồ thị (C). Hệ số góc k của tiếp tuyến với (C) tại điểm có hoành độ bằng 1 bằng
A. k = 25
B. k = -5
C. k = 10
D. k = 1
Cho hàm số \(y=x^3-3x+1\) (C). Viết pt tiếp tuyến của đồ thị (C) biết
a) Hệ số góc của tiếp tuyến bằng 9
b) Tiếp tuyến vuông góc với trục Oy
\(y'=3x^2-3\)
a. \(y'=9\Rightarrow3x^2-3=9\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=5\\x=-2\Rightarrow y=-1\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=9\left(x-2\right)+5\\y=9\left(x+2\right)-1\end{matrix}\right.\)
b. Tiếp tuyến vuông góc Oy nên nhận \(\left(0;1\right)\) là 1 vtpt \(\Rightarrow\) có hệ số góc \(k=0\)
\(\Rightarrow3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=3\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\\y=3\end{matrix}\right.\)
Cho hàm số y = x 3 3 + 3 x 2 - 2 có đồ thị là (C) Viết phương trình tiếp tuyến với đồ thị (C) biết tiếp tuyến có hệ số góc k = - 9
A. y + 16 = - 9 ( x + 3 )
B. y = - 9 ( x + 3 )
C. y - 16 = - 9 ( x - 3 )
D. y - 16 = - 9 ( x + 3 )
Cho hàm số y = x 3 3 + 3 x 2 - 2 có đồ thị là (C). Viết phương trình tiếp tuyến với đồ thị (C) biết tiếp tuyến có hệ số góc k = - 9
A. y + 16 = - 9 x + 3
B. y = - 9 x + 3
C. y - 16 = - 9 x - 3
D. y - 16 = - 9 x + 3
Cho hàm số y = x 3 3 + 3 x 2 - 2 có đồ thị là (C). Viết phương trình tiếp tuyến với đồ thị (C) biết tiếp tuyến có hệ số góc k= -9.
Cho hàm số y = x 2 + x + 1 x Hệ số góc k của tiếp tuyến của đồ thị hàm số y' tại điểm x=1 là
A. 3
B.2
C. 1
D. – 3
Cho hàm số y = x 2 + x + 1 x . Hệ số góc k của tiếp tuyến của đồ thị hàm số y’ tại điểm x=1 là
A. 3
B. 2
C. 1
D. – 3
a) tìm hệ số góc của tiếp tuyến của đồ thị hàm số y=-x^3+3x-2 (c) tại điểm có hoành độ -3
b) viết phương trình tiếp tuyến của đồ thị hàm số (c) trên tại điểm ( ứng với tiếp điểm ) có hoành độ -3
Cho hàm số y = 1 3 x 3 − 3 x 2 + x + 1 có đồ thị (C). Trong các tiếp tuyến với đồ thị (C), hãy tìm phương trình tiếp tuyến có hệ số góc nhỏ nhất.
A. y = − 8 x − 19
B. y = x − 19
C. y = − 8 x + 10
D. y = − x + 19
Cho hàm số \(y = {x^3} - 3{x^2} + 4x - 1\) có đồ thị là \((C)\). Hệ số góc nhỏ nhất của tiếp tuyến tại một điểm \(M\) trên đồ thị \((C)\) là
A. 1 .
B. 2.
C. -1 .
D. 3 .
\(y'=\left(x^3-3x^2+4x-1\right)'=3x^2-3\cdot2x+4\)
\(=3x^2-6x+3+1=3\left(x-1\right)^2+1>=1\)
Dấu = xảy ra khi x=1
=>Chọn A
Cho hàm số \(y = {x^3} - 3{{\rm{x}}^2}\). Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left( { - 1;4} \right)\) có hệ số góc bằng:
A. ‒3.
B. 9.
C. ‒9.
D. 72.
Ta có: \(y'3x^2-3.2x=3x^2-6x\).
Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left(-1;4\right)\) có hệ số góc bằng:\(y'\left(-1\right)=3.\left(-1\right)^2-6.\left(-1\right)=9\).
\(\Rightarrow B\)