Tìm nguyên hàm của hàm số f(x)=2x+1.
A. ∫ 2 x + 1 d x = x 2 3 + x + C
B. ∫ 2 x + 1 d x = x 2 + x + C
C. ∫ 2 x + 1 d x = 2 x 2 + 1 + C
D. ∫ 2 x + 1 d x = x 2 + C
Hàm số nào bên dưới không là nguyên hàm của hàm số \(f\left(x\right)=\dfrac{x^2-1}{x^2}\)
A. F(x)=\(\dfrac{x^2-x+1}{x}\)
B. F(x)=\(\dfrac{x^2+1}{x}\)
C. F(x)=\(\dfrac{x^2+2x+1}{x}\)
D. F(x)\(=\dfrac{x^2-1}{x}\)
\(f\left(x\right)=\dfrac{x^2-1}{x^2}=1-\dfrac{1}{x^2}\)
\(\int f\left(x\right)dx=\int\left(1-\dfrac{1}{x^2}\right)dx=\int1dx-\int x^{-2}dx\)
=\(x-\dfrac{x^{-2+1}}{-2+1}+C=x-\dfrac{x^{-1}}{-1}+C=x+\dfrac{1}{x}+C\)
C=-1 ta được phương án A(ko tm câu hỏi)
C=0 ta được phương án B(ko tm câu hỏi)
C=2 ta được phương án C(ko tm câu hỏi)
=>chọn D
Tìm nguyên hàm của hàm số \(f\left(x\right)=\dfrac{x^2+2x}{x+1}\).
Lời giải:
\(\int f(x)dx=\int \frac{x^2+2x}{x+1}dx=\int \frac{(x+1)^2-1}{x+1}dx=\int (x+1-\frac{1}{x+1})dx\)
\(=\int (x+1)dx-\int \frac{1}{x+1}dx=\frac{x^2}{2}+x-\ln |x+1|+c\)
Bải 1: Tìm tập xác định của các hàm số sau: a) 3x-2 2x+1 c) y=\sqrt{2x+1}-\sqrt{3-x} b) y= ²+2x-3 d) y= √2x+1 X f(x) Chú ý: * Hàm số cho dạng v thi f(x) * 0. ở Hàm số cho dạng y = v/(x) thì f(r) 2 0. X * Hàm số cho dạng " J7(p) thi f(x)>0.
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
Tìm nguyên hàm của hàm số:
1. \(f\left(x\right)=\left(2x-1\right)e^{\dfrac{1}{x}}\)
2. \(f\left(x\right)=e^{3x}.3^x\)
2.
\(I=\int e^{3x}.3^xdx\)
Đặt \(\left\{{}\begin{matrix}u=3^x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=3^xln3dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}\int e^{3x}.3^xdx=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}.I\)
\(\Rightarrow\left(1+\dfrac{ln3}{3}\right)I=\dfrac{1}{3}e^{3x}.3^x\)
\(\Rightarrow I=\dfrac{1}{3+ln3}.e^{3x}.3^x+C\)
1.
\(I=\int\left(2x-1\right)e^{\dfrac{1}{x}}dx=\int2x.e^{\dfrac{1}{x}}dx-\int e^{\dfrac{1}{x}}dx\)
Xét \(J=\int2x.e^{\dfrac{1}{x}}dx\)
Đặt \(\left\{{}\begin{matrix}u=e^{\dfrac{1}{x}}\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\dfrac{e^{\dfrac{1}{x}}}{x^2}dx\\v=x^2\end{matrix}\right.\)
\(\Rightarrow J=x^2.e^{\dfrac{1}{x}}+\int e^{\dfrac{1}{x}}dx\)
\(\Rightarrow I=x^2.e^{\dfrac{1}{x}}+C\)
Để tìm nguyên hàm của hàm số, ta cần xác định giá trị của hàm tại một điểm nào đó.
Trong trường hợp này, ta chọn điểm nhân nguyên tố nhất là 3.
Để tính giá trị của hàm tại điểm 3, ta đặt x=3 vào hàm số:
f ( x )
( 2 x − 1 ) e 1 x
= ( 2 ( 3 ) − 1 ) e 1 ( 3 )
= ( 6 − 1 ) e 1 3
= ( 5 ) e 1 3
f ( x )
e 3 x
= e 3 ( 3 )
= e 3 3
Ta tiến hành tính toán:
f ( 3 )
( 5 ) e 1 3
= 5 e 1 3
f ( 3 )
e 3 3
= e 3 3
Như vậy, giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.
Tóm lại, để tìm nguyên hàm của hàm số, ta đã tìm được rằng giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.
Cho F(x) là nguyên hàm của hàm số f x = 2 x + 1 8 x + 1 10 thỏa mãn F(0)=1. Tìm hàm số F(x).
A. F x = 1 8 2 x + 1 x + 1 8 + 7 8
B. F x = 1 9 ln 2 x + 1 x + 1 + 8 9
C. F x = 1 9 2 x + 1 x + 1 9 + 8 9
D. F x = − 1 9 x + 1 2 x + 1 9 + 10 9
Họ nguyên hàm F(x) của hàm số f ( x ) = 2 - ln 2 ( 2 x + 1 ) 2 x + 1
Tìm nguyên hàm của các hàm số sau:
f(x) = (x-1)(1-2x)(1-3x)
Tìm nguyên hàm của hàm số f ( x ) = 2 x + 1 .
A. ∫ f ( x ) d x = 1 2 2 x + 1 + C
B. ∫ f ( x ) d x = 2 3 2 x + 1 2 x + 1 + C
C. ∫ f ( x ) d x = - 1 3 2 x + 1 + C
D. ∫ f ( x ) d x = 1 3 2 x + 1 2 x + 1 + C
Chọn D
Đặt t = 2 x + 1 ⇒ d t = 1 2 x + 1 d x ⇒ d x = t d t
⇒ ∫ 2 x + 1 d x = ∫ t 2 d t = t 3 3 + C = 1 3 2 x + 1 2 x + 1 + C
Họ nguyên hàm F(x) của hàm số f ( x ) = 2 − ln 2 ( 2 x + 1 ) 2 x + 1 là
A. F ( x ) = ln 2 x + 1 − ln 3 2 x + 1 6 + C
B. F ( x ) = − 2 + 2 ln 2 x + 1 2 x + 1 2 + C
C. F ( x ) = 2 ln ( 2 x + 1 ) − ln 3 2 x + 1 3 + C
D. F ( x ) = 2 ( 2 x + 1 ) − ln 3 2 x + 1 + C