Cho hàm số f(x) có đạo hàm f'(x) thỏa mãn các đẳng thức ∫ 0 1 ( 2 x - 1 ) f ' ( x ) d x = 10 , f ( 1 ) + f ( 8 ) = 0 . Tính I = ∫ 0 1 f ( x ) d x .
A. I = 2.
B. I = 1.
C. I = -1.
D. I = -2.
Cho F(x) là một nguyên hàm của hàm số 1 e x + 1 , thỏa mãn F ( 0 ) = - ln 2 . Tìm tập nghiệm S của phương trình F ( x ) + l n ( e x + 1 ) = 3
A. S = 3
B. S = - 3
C. S = ∅
D. S = ± 3
Cho F(x) là một nguyên hàm của hàm số f ( x ) = 1 x - 1 thỏa mãn F(5)=2 và F(0)=1. Tính F(2)-F(-1)
A. 1+ln2
B. 0
C. 1-3ln2
D. 2+ln2
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;4] thỏa mãn f(1)=-1, f(4)=-8 và x 3 ( f ' ( x ) ) 2 - f ( x ) = 9 x 3 - x - 3 x , ∀ x ∈ [ 1 ; 4 ] . Tích phân ∫ 1 4 f ( x ) d x bằng
A. -7
B. - 89 6
C. - 79 6
D. -8
Cho hàm số y = f(x) thỏa mãn f ( 0 ) = 0 ; f ' ( x ) = x x 2 + 1 . Họ nguyên hàm của hàm số g ( x ) = 4 xf ( x ) là:
A . ( x 2 + 1 ) ln ( x 2 ) - x 2 + c
B . x 2 ln ( x 2 + 1 ) - x 2
C . ( x 2 + 1 ) ln ( x 2 + 1 ) - x 2 + c
D . ( x 2 + 1 ) ln ( x 2 + 1 ) - x 2
Một nguyên hàm F(x) của hàm số f ( x ) = e - x + e x 2 thỏa mãn F(0) = 1 là
Cho F(x) là một nguyên hàm của hàm số f(x) thỏa mãn ∫ 0 1 f x d x = 2 v à F 0 = 1 . Giá trị của F(1) là:
A. 2
B. 4
C. 3
D. 1
Cho F(x) là một nguyên hàm của hàm số f x = 1 + x − 1 − x trên tập và thỏa mãn F 1 = 3 ; F - 1 = 2 ; F - 2 = 4 ; Tính tổng T = F 0 + F 2 + F − 3 .
A. 8
B. 12
C. 14
D. 10
Gọi F(x) là một nguyên hàm của hàm số f (x)= 2 x thỏa mãn F ( 0 ) = 1 ln 2 . Tính giá trị biểu thức T = F ( 0 ) + F ( 1 ) + F ( 2 ) + . . . + F ( 2017 ) .
A. T = 1009 . 2 2017 + 1 ln 2
B. T = 2 2017 . 2018
C. T = 2 2017 - 1 ln 2
D. T = 2 2018 - 1 ln 2