Cho F(x) là một nguyên hàm của hàm số f x = 1 + x − 1 − x trên tập ℝ và thỏa mãn F(1) = 3. Tính tổng T = F 0 + F 2 + F − 3 .
A. 8
B. 12
C. 18
D. 10
Cho F(x) là một nguyên hàm của hàm số f x = 1 + x - 1 - x trên tập R và thỏa mãn F 1 = 3 . Tính tổng T = F 0 + F 2 + F - 3
A. 18
B. 12
C. 14
D. 15
Cho hàm số f(x) xác định trên R\{±1} thỏa mãn f '(x) = 1 x 2 - 1 . Biết f(–3) +f(3) = 0 và f - 1 2 + f 1 2 = 2. Giá trị T = f(–2) + f(0) + f(4) bằng:
A. T = 1 2 ln 9 5
B. T = 2 + 1 2 ln 9 5
C. T = 3 + 1 2 ln 9 5
D. T = 1 + 1 2 ln 9 5
Cho F(x) là một nguyên hàm của hàm số f ( x ) = 1 x - 1 thỏa mãn F(5)=2 và F(0)=1. Tính F(2)-F(-1)
A. 1+ln2
B. 0
C. 1-3ln2
D. 2+ln2
Gọi F(x) là một nguyên hàm của hàm số f (x)= 2 x thỏa mãn F ( 0 ) = 1 ln 2 . Tính giá trị biểu thức T = F ( 0 ) + F ( 1 ) + F ( 2 ) + . . . + F ( 2017 ) .
A. T = 1009 . 2 2017 + 1 ln 2
B. T = 2 2017 . 2018
C. T = 2 2017 - 1 ln 2
D. T = 2 2018 - 1 ln 2
Cho hàm số f(x) xác định trên R \ 1 2 thỏa mãn f ' ( x ) = 2 2 x - 1 ; f(0)=1 và f(1)=0. Giá trị của biểu thức T = f ( - 1 ) + f ( 3 ) là
A. T = 4 + ln15
B. T = 2 + ln15.
C. T = 3 + ln15
D. T = ln15.
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0; 1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Biết F (x) là một nguyên hàm của hàm số f ( x ) = 10 x 3 - 7 x + 2 2 x - 1 thỏa mãn F(1) = 5. Giả sử rằng F(3) = a + b 5 , trong đó a , b là các số nguyên. Tính tổng bình phương của a và b.
A. 121
B. 73
C. 265
D. 361
Cho hàm số f(x) xác định trên ℝ \ − 1 ; 1 và thỏa mãn f ' x = 1 x 2 − 1 . Biết f − 3 + f 3 = 0 và f − 1 2 + f 1 2 = 2. Tính T = f − 2 + f 0 + f 5
A. 1 2 ln 2 − 1
B. ln 2 + 1
C. 1 2 ln 2 + 1
D. ln 2 − 1