Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 20:22

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến

nên AM là tia phân giác của góc BAC

Mẫn Nhi
9 tháng 1 2022 lúc 20:24

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến

nên AM là tia phân giác của góc BAC

꧁༺Lê Thanh Huyền༻꧂
18 tháng 1 2022 lúc 16:14

Câu trả lời:

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến

nên AM là tia phân giác của góc BAC

Burger KIng
Xem chi tiết
Bùi Khánh Linh
Xem chi tiết
chuche
8 tháng 4 2022 lúc 12:23

Công chúa thủy tề
Xem chi tiết
giúp nha
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 9:39

4:

b: Xét tứ gác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//CD

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
17 tháng 9 2023 lúc 21:52

a) Xét tam giác AHB và tam giác AHM có:

     AH chung;

     \(\widehat {AHB} = \widehat {AHM}\)(là hình chiếu của lên BC nên \(AH \bot BC\));

     HB = HM (H là trung điểm của BM).

Vậy \(\Delta AHB = \Delta AHM\)(c.g.c).

b) \(\Delta AHB = \Delta AHM\)nên AB = AM ( 2 cạnh tương ứng).

G là giao điểm của hai đường trung tuyến AM và BN nên G là trọng tâm tam giác ABC. Nên: \(AG = \dfrac{2}{3}AM\).

Mà AB = AM suy ra: \(AG = \dfrac{2}{3}AB\).

Sỹ Bảo Lê
Xem chi tiết
Akai Haruma
28 tháng 12 2023 lúc 0:28

Lời giải:
a.

Do tam giác $ABC$ cân tại $A$ nên $AB=AC$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$AM$ chung

$BM=CM$ (do $M$ là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$

Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$

Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$

$\Rightarrow \widehat{AMB}=180^0:2=90^0$

$\Rightarrow AM\perp BC$

c.

$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$

$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)

$\Rightarrow EB=EC$

$\Rightarrow \triangle EBC$ cân tại $E$.

Akai Haruma
28 tháng 12 2023 lúc 0:30

Hình vẽ:

Nữ hoàng sến súa là ta
Xem chi tiết
Trần Minh Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2023 lúc 23:48

AD/DB=AM/MB

AE/EC=AM/MC

mà MB=MC

nên AD/DB=AE/EC

=>DE//BC

Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1

=>AM/MB=AM/MC=1

=>ΔABC vuông tại A

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2022 lúc 21:40

Xét ΔBMI và ΔCME có

MI=ME

góc BMI=góc CME

MB=MC

Do đó: ΔBMI=ΔCME