Chứng minh các phương trình sau có nghiệm duy nhất
3(cosx − 1) + 2sinx + 6x = 0
Chứng minh các phương trình sau có nghiệm duy nhất
3(cosx − 1) + 2sinx + 6x = 0
Đặt y = 3(cos x – 1) + 2sinx + 6
Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈ R
Ta có: y(π) = 0 và y' = -3sin x + 2cos x + 6 > 0, x ∈ R.
Hàm số đồng biến trên R và có một nghiệm x = π
Vậy phương trình đã cho có một nghiệm duy nhất.
Bài 1: Tìm m để các phương trình sau có nghiệm
a) \((m+2)sinx+mcosx=2\)
b) \(msinx+(m-1)cosx=2m+1\)
c) \((m+2)sin2x+mcos^2x=m-2+msin^2x\)
Bài 2: Tìm m để các phương trình sau vô nghiệm
a) \((2m-1)sinx+(m-1)cosx=m-3\)
b) \(2sinx+cosx=m(sinx-2cosx+3)\)
1.
a, Phương trình có nghiệm khi:
\(\left(m+2\right)^2+m^2\ge4\)
\(\Leftrightarrow m^2+4m+4+m^2\ge4\)
\(\Leftrightarrow2m^2+4m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)
b, Phương trình có nghiệm khi:
\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)
\(\Leftrightarrow2m^2+6m\le0\)
\(\Leftrightarrow-3\le m\le0\)
2.
a, Phương trình vô nghiệm khi:
\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)
\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)
\(\Leftrightarrow4m^2-7< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)
b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)
\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)
Phương trình vô nghiệm khi:
\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)
\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
1.
c, \(\left(m+2\right)sin2x+mcos^2x=m-2+msin^2x\)
\(\Leftrightarrow\left(m+2\right)sin2x+m\left(cos^2x-sin^2x\right)=m-2\)
\(\Leftrightarrow\left(m+2\right)sin2x+mcos2x=m-2\)
Phương trình vô nghiệm khi:
\(\left(m+2\right)^2+m^2< \left(m-2\right)^2\)
\(\Leftrightarrow m^2+4m+4+m^2< m^2-4m+4\)
\(\Leftrightarrow m^2+8m< 0\)
\(\Leftrightarrow-8\le m\le0\)
Phương trình nào sau đây có nghiệm duy nhất trên R?
A. x 2 - 7x + 12 = 0 B. x 3 + 5x + 6 = 0
C. x 4 - 3 x 2 + 1 = 0 D. 2sinx. cos 2 x - 2sinx - cos 2 x + 1 = 0
Đáp án:B.
Với f(x) = x 3 + 5x + 6 thì vì f'(x) = 3 x 2 + 5 > 0, ∀ x ∈ R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.
Chứng minh rằng phương trình:
a) 2x3 + 6x + 1 = 0 có ít nhất hai nghiệm;
b) cosx = x có nghiệm.
a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.
Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).
Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.
b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.
Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).
Hoàng anh gia lai và Võ Đong Anh Tuấn chắc chắn là 1 người
Chứng minh phương trình sau luôn có nghiệm:
\(acos2x+bsinx+cosx=0\)
Đặt \(f\left(x\right)=a.cos2x+b.sinx+cosx\)
Hàm \(f\left(x\right)\) xác định và liên tục trên R
\(f\left(\dfrac{\pi}{4}\right)=\dfrac{b\sqrt{2}}{2}+\dfrac{\sqrt{2}}{2}\)
\(f\left(\dfrac{5\pi}{4}\right)=-\dfrac{b\sqrt{2}}{2}-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow f\left(\dfrac{\pi}{4}\right).f\left(\dfrac{5\pi}{4}\right)=-\dfrac{1}{2}\left(b+1\right)^2\le0\) ; \(\forall a;b;c\)
\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc đoạn \(\left[\dfrac{\pi}{4};\dfrac{5\pi}{4}\right]\) hay pt đã cho luôn có nghiệm
Nghiệm phương trình: cosx ( cosx + 2 sinx ) + 3 sinx ( sinx + 2 ) sin 2 x - 1 = 1
A. x = ± π 4 + k2π, k ∈ Z
B. x = - π 4 + kπ, k ∈ Z
C. x = - π 4 + k2π, x = - 3 π 4 + k2π, k ∈ Z
D. x = - π 4 + k2π, k ∈ Z
Nghiệm của phương trình 2 sin x ( cos x - 1 ) = 3 cos 2 x là:
A. π 3 + k 2 π , k ∈ ℤ hoặc 4 π 9 + k 2 π 3 , k ∈ ℤ
B. π 3 + k π , k ∈ ℤ hoặc 4 π 9 + k π 3 , k ∈ ℤ
C. - π 3 + k 2 π , k ∈ ℤ hoặc 2 π 9 + k 2 π 3 , k ∈ ℤ
D. - π 3 + k π , k ∈ ℤ hoặc 2 π 9 + k π 3 , k ∈ ℤ
Phương trình 2 sin x + cos x + 1 sin x - 2 cos x + 3 = m có nghiệm khi:
A. m ≥ 2 h o ặ c m ≤ - 1 2
B. - 2 ≤ m ≤ 1 2
C. - 1 2 ≤ m ≤ 2
D. - 1 2 < m < 2
Tìm m để phương trình m = cos x + 2 sin x + 3 2 cos x - sin x + 4 có nghiệm.