Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyền còi chấm mắm tôm
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Bùi Anh Tuấn
21 tháng 3 2021 lúc 20:31

a, Với m=1 thay vào pt 

Ta có

\(x^2+x-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

b, 

Thay x=2 vào pt

ta có

\(4-2-3m+2=0\)

\(\Leftrightarrow4-3m=0\)

\(\Rightarrow m=\dfrac{4}{3}\)

c, Ta có

\(\Delta=1-4\left(-3m+2\right)\)

\(=12m-7\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Rightarrow12m-7>0\)

\(\Rightarrow m>\dfrac{7}{12}\)

d, 

Để ptcos nghiệm kép thì \(\Delta=0\)

\(\Rightarrow12m-7=0\)

\(\Rightarrow m=\dfrac{7}{12}\)

e, 

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Rightarrow m< \dfrac{7}{12}\)

HuyKabuto
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
Hoàng Đình Bảo
24 tháng 4 2021 lúc 23:18

Ta có:\(\Delta'=(m-2)^2-m^2+2m+5\)

               \(=m^2-4m+4-m^2+2m+5\)

               \(=-2m+9\)      

Để phương trình có 2 nghiệm thì:\(\Delta'\ge0\)

\(\Rightarrow \left[\begin{array}{} \Delta'>0\\ \Delta'=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} -2m+9>0\\ -2m+9=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} m<\frac{9}{2}\\ m=\frac{9}{2} \end{array} \right.\)

Vậy để phương trình có 2 nghiệm thì: \(m\ge\frac{9}{2}\)

 

 

nguyễn thế sơn
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 12 2021 lúc 16:31

\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)

Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)

\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)

nguyễn thế sơn
25 tháng 12 2021 lúc 16:32

cứu mik với

Hoàng Nam
Xem chi tiết
Fake Minh
Xem chi tiết
Kudo Shinichi
9 tháng 2 2023 lúc 12:42

a) m = 4 thì PT trở thành:

\(2.\left(4^2-9\right)x+4-3=0\)

\(\Leftrightarrow10x+1=0\)

\(\Leftrightarrow x=-\dfrac{1}{10}\)

Vậy PT có nghiệm \(x=-\dfrac{1}{10}\)

b) Đặt nghiệm của PT là \(x_0\)

\(\Rightarrow2\left(m^2-9\right)x_0+m-3=\forall x_0\)

\(\Leftrightarrow2\left(m-3\right)\left(m+3\right)x_0+m-3=0\forall x_0\)

\(\Leftrightarrow\left[2\left(m+3\right)+x_0\right]\left(m-3\right)=0\forall x_0\)

\(\Rightarrow m-3=0\\ \Leftrightarrow m=3\)

Vậy m = 3 thì phương trình nghiệm đúng với mọi x

Linh Bùi
Xem chi tiết
Nguyễn Trọng Chiến
7 tháng 3 2021 lúc 17:44

Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)

Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5  nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)

NT 15
Xem chi tiết
Nguyễn Phương Diệp Thy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2021 lúc 22:36

Bài 1: 

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)

Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)

\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)

Suy ra: \(-12x-3=8x-2-6x-8\)

\(\Leftrightarrow-12x-3-2x+10=0\)

\(\Leftrightarrow-14x+7=0\)

\(\Leftrightarrow-14x=-7\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)