Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
?????
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 10 2021 lúc 13:40

\(x+y+z=9\Leftrightarrow\left(x+y+z\right)^2=81\\ \Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=81\\ \Leftrightarrow xy+yz+xz=\dfrac{81-27}{2}=27\\ \Leftrightarrow x^2+y^2+z^2=xy+yz+xz\\ \Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow x=y=z=\dfrac{9}{3}=3\left(x+y+z=9\right)\)

\(\Leftrightarrow\left(x-4\right)^{2018}+\left(y-4\right)^{2019}+\left(z-4\right)^{2020}\\ =\left(-1\right)^{2018}+\left(-1\right)^{2019}+\left(-1\right)^{2020}=1-1+1=1\)

Nguyen Thi Mai
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:38

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:43

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

Nguyễn Mời Anh
Xem chi tiết
Minz Ank
Xem chi tiết
Nguyễn Thị Hồng Điệp
Xem chi tiết
Đinh Đức Hùng
26 tháng 2 2017 lúc 12:22

Sủa lại đề nha : \(\left|\left(3x+4\right)^2+\left|y-5\right|\right|=1\)

Vì \(\left(3x+4\right)^2\ge0\) ; \(\left|y-5\right|\ge0\)

\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|\ge0\)

\(\Rightarrow\left|\left(3x+4\right)^2+\left|y-5\right|\right|=\left(3x+4\right)^2+\left|y-5\right|\)

\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|=1=0+1=1+0\)

Nếu \(\left(3x+4\right)^2=0\) thì \(\left|y-5\right|=1\) => \(x=-\frac{4}{3}\) thì \(y=4;6\)

Nếu \(\left(3x+4\right)^2=1\) thì \(\left|y+5\right|=0\) =? \(x=-\frac{5}{3};-1\) thì y = \(-5\)

=> cặp ( x;y ) thỏa mãn đề bài là ( -4/3; 4 ); (-4/3;6) ; (-5/3;-5) ; (-1;5)

Mà x ; y nguyên => ( x;y ) = ( -1;5 )

Vậy có 1 cặp (x;y) thỏa mãn

Phạm Thị Thu Liên
26 tháng 2 2018 lúc 9:56

Đáp án đúng là 1 đó bạn . Mk làm rùi

hoàng
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2023 lúc 17:48

\(P=\dfrac{6x+6y+2xy}{2}=\dfrac{6x+6y+2xy+10-10}{2}\)

\(=\dfrac{6x+6y+2xy+2\left(x^2+y^2\right)+6}{2}-5\)

\(=\dfrac{\left(x+y+2\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-5\ge-5\)

\(P_{min}=-5\) khi \(x=y=-1\)

lê hồng thanh hường
Xem chi tiết
Tuyet
30 tháng 5 2023 lúc 14:47

BẠN THAM KHẢO :

loading...

thành piccolo
Xem chi tiết
Hien Le
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2023 lúc 21:04

Từ giả thiết:

\(29\le y^2+2xy+4x\le y^2+2xy+x^2+4\)

\(\Rightarrow\left(x+y\right)^2\ge25\Rightarrow x+y\ge5\)

Đặt \(P=2x+3y+\dfrac{4}{x}+\dfrac{18}{y}\)

\(\Rightarrow P=x+y+\left(x+\dfrac{4}{x}\right)+2\left(y+\dfrac{9}{y}\right)\ge5+2\sqrt{\dfrac{4x}{x}}+2.2\sqrt{\dfrac{9y}{y}}=21\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)

nguyễn hữu kiên
Xem chi tiết