Xác định m để bất phương trình sau có nghiệm: x 2 - 1 ≤ 0 x 2 - 2 ( m + 1 ) x + 4 m + 1 ≥ 0
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Câu 1 : Xác định m để bất phương trình có tập nghiệm là R
1 \(\le\) \(\frac{3x^2-mx+5}{2x^2-x+1}< 6\)
Câu 2 :Xác định m để hệ bất phương trình sau có nghiệm:
\(\hept{\begin{cases}x^2+2x-15< 0\\\left(m-1\right)x\ge3\end{cases}}\)
Bạn dùng thanh này
để đánh rõ hơn nha :vvvv .
Cho phương trình :
\(x^2-2\left(m-1\right)x+m^2-3m=0\)
a) Xác định m để phương trình có 2 nghiệm phân biệt
b) Xác định m để phương trình có đúng 1 nghiệm âm
c) Xác định m để phương trình có 1 nghiệm bằng 0. Tìm nghiệm còn lại
d) Tìm hệ thức liên hệ giữa 2 nghiệm x1, x2 của phương trình không phụ thuộc và m
e) Xác định m để phương trình có 2 nghiệm thỏa mãn \(x1^2+x2^2=8\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
Bài 3. Xác định m để hệ bất phương trình sau có nghiệm, vô nghiệm, có nghiệm duy nhất?a)\(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
1. Định m để bất phương trình m(x-1) > 2mx - 3 có vô số nghiệm
2. Tìm m để m(x-2) + m -1 < 0 bất phương trình có vô số nghiệm
cho phương trình: x2 - 2(m - 1)x +m2 + 4m + 13 = 0 (1)
a) xác định m để phương trình (1) có nghiệm
b) xác định m để phương trình (1) có hai nghiệm
x2 - 2(m - 1)x +m2 + 4m + 13 = 0 (1) \(\left(a=1;b=-2\left(m-1\right);c=m^2+4m+13\right)\)
Ta có \(\Delta'=\left(-\left(m-1\right)\right)^2-1.\left(m^2+4m+13\right)\)
\(=m^2-2m+1-m^2-4m-13\)
\(=-6m-12=-6\left(m+2\right)\)
a+b, Để phương trình (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-6\left(m+2\right)\ge0\)
\(\Leftrightarrow m+2\le0\)
\(\Leftrightarrow m\le-2\)
Câu b giống với câu a nhé!
Tìm tất cả những giá trị thực của m để bất phương trình sau có nghiệm với mọi x thuộc tập xác định. 2 x 4 + 2 x + 2 6 - x 4 + 2 6 - x > m
A. m > 12 4 + 2 3
B. m < 6 + 2 3
C. m < 12 4 + 2 3
D. m > 2 6 4 + 2 6
Cho phương trình: x^2 -2(m+1)x-4m=0
a. xác định m để phương trình có nghiệm kép?
b. Xác định m để phương trình có một nghiệm bằng 4? Tìm nghiệm còn lại
c. Với điều kiện nào của m thì phương trình có nghiệm cũng cùng dấu hoặc nghiệm kép