Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rocker Phong
Xem chi tiết
Steolla
2 tháng 9 2017 lúc 12:19

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2017 lúc 12:05

a) Trường hợp 1. Xét 4 - 5x = 5 - 6x.

Tìm được x = 1.

Đông Tatto
Xem chi tiết
Nguyên thanh Huyên
Xem chi tiết
Hà Khánh Dung
19 tháng 8 2020 lúc 8:43

7x-3=6x+7

Khách vãng lai đã xóa
Hà Khánh Dung
19 tháng 8 2020 lúc 8:44

7x-3=6x+7

7x-6x=7+3

x=10

Khách vãng lai đã xóa
☪ηɠuγêτ☆
19 tháng 8 2020 lúc 8:50

7x-3=6x+7
ta có
7x-3=6x+x-3
=>6x+x-3=6x+7
=>x-3=7
=>x=10

Khách vãng lai đã xóa
Uyên Dii
Xem chi tiết
ninhlinh
Xem chi tiết
Trúc Giang
5 tháng 7 2021 lúc 11:09

\(\dfrac{-7x+14}{\left(x+5\right)\left(2x-3\right)}>0\) (1)

ĐKXĐ: \(x\ne-5;x\ne\dfrac{3}{2}\)

BPT (1) \(\Leftrightarrow\dfrac{-7\left(x-2\right)}{\left(x+5\right)\left(2x-3\right)}>0\)

\(\Leftrightarrow\dfrac{x-2}{\left(x+5\right)\left(2x-3\right)}< 0\)

*Th1: \(\left\{{}\begin{matrix}x-2>0\\\left(x+5\right)\left(2x-3\right)< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>2\\-5< x< \dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow2< x< \dfrac{3}{2}\) (vô lí)

*Th2: \(\left\{{}\begin{matrix}x-2< 0\\\left(x+5\right)\left(2x-3\right)>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< 2\\\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2>x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\)

Vậy:....

Đã Ẩn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 1 2021 lúc 22:31

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)

Trà Giang
Xem chi tiết
Hoàng Phúc
18 tháng 5 2016 lúc 10:16

3.(2x2+5) > 6x.(x+5)

<=>6x2+15 > 6x2+30x

<=>15 > 30x (cùng bớt đi 6x2)

<=>30x < 15

<=>x < \(\frac{15}{30}=\frac{1}{2}\)

Vậy x < 1/2 thì thỏa mãn BPT

Hồng Trinh
18 tháng 5 2016 lúc 10:20

3(2x2+5) \(\ge\) 6x(x+5)

\(\Leftrightarrow\) 6x2 +15 \(\ge\) 6x2 + 30x

\(\Leftrightarrow\) 15 \(\ge\) 30x \(\Leftrightarrow\) x \(\le\)\(\frac{1}{2}\)

No_pvp
12 tháng 7 2023 lúc 16:38

Mày nhìn cái chóa j

G.Dr
Xem chi tiết
Hồng Phúc
16 tháng 3 2021 lúc 18:55

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.