Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hà An
Xem chi tiết
trang lê
Xem chi tiết
Scarlett Ohara
Xem chi tiết
Akai Haruma
30 tháng 10 2021 lúc 13:57

Lời giải:

$A=(x-y)+\frac{4}{x-y}+y+\frac{1}{y}$

Áp dụng BĐT Cô-si:

$(x-y)+\frac{4}{x-y}\geq 2\sqrt{(x-y).\frac{4}{x-y}}=4$
$y+\frac{1}{y}\geq 2$

$\Rightarrow A\geq 4+2=6$

Vậy $A_{\min}=6$ khi $(x,y)=(3,1)$

Hạnh Lương
Xem chi tiết
Trịnh Cao Nguyên
Xem chi tiết
Trịnh Cao Nguyên
Xem chi tiết
Trương Tuấn Dũng
27 tháng 6 2016 lúc 22:03

bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng

Trịnh Cao Nguyên
Xem chi tiết
Trương Tuấn Dũng
28 tháng 6 2016 lúc 9:30

bài 1 sai đề

Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 22:41

\(A^2=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+2\left(\dfrac{xy}{\sqrt{yz}}+\dfrac{yz}{\sqrt{xz}}+\dfrac{xz}{\sqrt{xy}}\right)\)

Áp dụng BĐT cosi:

\(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\ge4\sqrt[4]{\dfrac{x^4y^2z}{y^2z}}=4x\)

\(\dfrac{y^2}{z}+\dfrac{yz}{\sqrt{xz}}+\dfrac{yz}{\sqrt{xz}}+x\ge4\sqrt[4]{\dfrac{y^4z^2x}{z^2x}}=4y\)

\(\dfrac{z^2}{x}+\dfrac{xz}{\sqrt{xy}}+\dfrac{xz}{\sqrt{xy}}+y\ge4\sqrt[4]{\dfrac{z^4x^2y}{x^2z}}=4z\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow A^2+\left(x+y+z\right)\ge4\left(x+y+z\right)\\ \Leftrightarrow A^2\ge3\left(x+y+z\right)\ge3\cdot12=36\\ \Leftrightarrow A\ge6\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{12}{3}=4\)

Big City Boy
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
24 tháng 1 2021 lúc 10:41

Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra khi \(a=b\)

Bài tập :

Có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{x}+\dfrac{x+y}{y}=2+\dfrac{x}{y}+\dfrac{y}{x}\) ( do \(x+y=1\) )

Theo BĐT trên có : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)

Nên \(A\ge2+2=4\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)