CMR b,10n+7n-7 chia hết cho 81
Cmr : a 10n +72n -1 chia hết cho 81
b 1111111( 81 chữ số 1 ) chia hết cho 81
Biết a+b + c chia hết cho 7 . CMR số abc chia hết cho 7 thì a = b
CMR:
a,10n+18n-1 chia hết cho 27
b,10n+7n-7 chia hết cho 81
a)10^n+18n-1=10^n-1+18n=999....99(n chu so 9)+18n
=9.(111...11(n chu so 9)+2n)
Xet 111...11(n chu so 9)+2n=111..11-n+3n
De thay tong cac chu so cua 111....11(n chu so 1) la n
=>111...11-n chia het cho 3
=>111...11-n+3n chia het cho 3
=>10^n+18n-1 chia het cho 27
CMR:
a,10n+18n-1 chia hết cho 27
b,10n+7n-7 chia hết cho 81
bài 1 : tim x thuộc N* biết A = 11111111111...1-7777777....7 là số chính phương và 2x chữ số 1 và x chữ số 7
bài 2 :
Cmr : a 10n +72n -1 chia hết cho 81
b 1111111( 81 chữ số 1 ) chia hết cho 81
bài 3 : Biết a+b + c chia hết cho 7 . CMR số abc chia hết cho 7 thì a = b
bài 4 :Tìm một số biết 9 lần số đó bằng số đó viết thêm chữ số 0 vào giữa chữ số hàng chục và đơn vị
Cmr : a 10n +72n -1 chia hết cho 81
b 1111111( 81 chữ số 1 ) chia hết cho 81
Biết a+b + c chia hết cho 7 . CMR số abc chia hết cho 7 thì a = b
Tìm n thuộc Z để:
a) (2n^2-n+2) chia hết cho (2n+1)
b) (2n^2+n-7) chia hết cho (n-2)
c) (10n^2-7n-5) chia hết cho (2n-3)
d) (2n^2+3n+3) chia hết cho (2n-1)
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
TÌM n thuộc N sao cho
a)7n+3 chia hết n
b)12n-1 chia hết 4n+2
c)10n+5 chia hết 5n-1
\(a,\frac{7n+3}{n}\)
\(\Rightarrow3⋮n\)Vì \(7n⋮n\)
\(\Rightarrow n\inƯ\left(3\right)=\left(1;3\right)\)
\(b,\frac{12n-1}{4n+2}\)
\(=\frac{12n+6-7}{4n+2}\)
\(=\frac{3\left(4n+2\right)}{4n+2}-\frac{7}{4n+2}\)
Để \(12n-1⋮4n+2\)
\(\Rightarrow7⋮4n+2\)
\(\Rightarrow4n+2\inƯ\left(7\right)=\left(1;7;-1;-7\right)\)
TÌM n thuộc N sao cho
a)7n+3 chia hết n
b)12n-1 chia hết 4n+2
c)10n+5 chia hết 5n-1
a) Ta có :
\(7n+3⋮n\)
Mà \(n⋮n\)
\(\Leftrightarrow\left\{{}\begin{matrix}7n+3⋮n\\7n⋮n\end{matrix}\right.\)
\(\Leftrightarrow3⋮n\)
Vì \(n\in N;3⋮n\Leftrightarrow n\inƯ\left(3\right)=\left\{1;3\right\}\)
Vậy ....................
b) Ta có :
\(12n-1⋮4n+2\)
Mà \(4n+2⋮4n+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n-1⋮4n+2\\12n+6⋮4n+2\end{matrix}\right.\)
\(\Leftrightarrow7⋮4n+2\)
Vì \(n\in N\Leftrightarrow4n+2\in N;4n+2\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4n+2=1\\4n+2=7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=\dfrac{-1}{4}\\n=\dfrac{5}{4}\end{matrix}\right.\) \(\left(loại\right)\)
Vậy ....
mình chỉ bt câu a mình học trên lớp thôi bn thông cảm ! :(
a.
Ta có: 7n+3 chia hết cho n => 7n chia hết cho n => 3 chia hết cho n
mà n thuộcN => n thuộc Ư(3)
vậy n thuộc Ư [1;3}
TICK zùm mình nhé!