Cho đa giác đều A 1 A 2 A 3 . . . A 30 nội tiếp trong đường tròn (O). Tính số hình chữ nhật có các đỉnh là 4 trong 30 đỉnh của đa giác đó.
A. 105
B. 27405
C. 27406
D. 106
Cho khối đa diện như hình vẽ bên. Trong đó ABC.A' B' C' là khối lăng trụ tam giác đều có tất cả các cạnh đều bằng 1, S.ABC khối chóp tam giác đều có cạnh bên SA=2/3. Mặt phẳng (SA' B' ) chia khối đa diện đã cho thành hai phần. Gọi V 1 là thể tích phần khối đa diện chứa đỉnh A, V 2 là thể tích phần khối đa diện không chứa đỉnh A. Mệnh đề nào sau đây đúng
A. 72 V 1 = 5 V 2
B. 3 V 1 = V 2
C. 24 V 1 = 5 V 2
D. 4 V 1 = 5 V 2
Giá trị của a để đa thức 2x² – 3x + a chia hết cho đa thức x – 2 là
4
2
–2
3
Số đo mỗi góc của lục giác đều là
60º
120º
108º
100º
Kết quả phân tích đa thức x² – x – 6 thành nhân tử là
(x + 3)(x – 2)
(x – 3)(x + 2)
(x + 6)(x – 1)
(x – 6)(x + 1)
Kết quả phân tích đa thức 5x³ – 10x²y + 5xy² thành nhân tử là
– 5x(x + y) ²
5x(x – y) ²
x(x + 5y) ²
x(5x – y) ²
Khai triển hằng đẳng thức (x – 2y) ² ta được:
x² + 4y² – 4xy
x² – 2xy + 4y²
x² – 2xy + 2y²
x² – 4xy + y²
Chọn câu trả lời đúng
Tứ giác có hai đường chéo vuông góc là hình thoi
Hình thoi là tứ giác có tất cả các góc bằng nhau
Hình bình hành có một đường chéo là đường phân giác của một góc là hình vuông
Hình chữ nhật có hai đường chéo vuông góc là hình vuông
Một mảnh vườn hình vuông có chu vi là 28m. Diện tích của mảnh vườn đó là
49cm²
56m²
784m²
49m²
Rút gọn biểu thức M = x³ – 8 – (x – 1)(x² + x + 1), ta được
2x³– 9
2x³ – 7
– 7
– 9
13cm
7,5cm
6,5cm
10cm
Khi x = –2 thì A = 5
Khi x = 1 thì A = 8
Khi x = –1 thì A có giá trị nhỏ nhất bằng 4
A có luôn có giá trị âm
Câu 1: C
Câu 2: A
Câu 3: B
Câu 4:B
Câu 5: A
Cho đường tròn tâm (O), bán kính R ngoại tiếp đa giác dêdu của đường tròn A. Tính bán kính của đường tròn ngoại tiếp đa giác đó (A;R) trong trường hợp a, đa giác là tam giác đều b, đa giác là hình vuông c, đa giác là lục giác đều
Cho đa giác đều 2n đỉnh (n>2)
a) có bao nhiêu tam giác cân có đỉnh là đỉnh của đa giác
b) có bao nhiêu tam giác đều _____________________
Cho một đa giác đều 24 đỉnh. Hỏi: 1. Đa giác có bao nhiêu đường chéo? 2. Từ các đỉnh của đa giác, lập được bao nhiêu: a. Đoạn thẳng. b. Vectơ khác vectơ-không. c. Tam giác.
\(1,\) Đa giác có 24 đỉnh \(\Rightarrow\) Đa giác có 24 cạnh
Số đường chéo của đa giác là \(C_{24}^2-24=252\) đường chéo.
\(2,\)
\(a,\) Từ các đỉnh của đa giác, lập được \(252+24=276\) đoạn thẳng.
\(b,\) Từ các đỉnh của đa giác, lập được \(A^2_{24}=552\) vectơ khác vectơ-không.
\(c,\) Từ các đỉnh của đa giác, lập được \(C^3_{24}=2024\) tam giác.
(Bài này làm như thế nào vậy mn?Khó quas)
Cho đa giác đều (H) có 30 đỉnh. Lấy tùy ý 3 đỉnh của (H). Xác suất để 3 đỉnh lấy được tạo thành một tam giác tù bằng?
A. 39/140
B. 39/58
C. 45/58
D. 39/280
Cho tam giác ABC vuông tại A, góc B=30 độ. Lấy điểm D thuộc cạnh BC sao cho góc BAD=30 độ. CMR:
a) Tam giác ABC là tam gics đều.
b) AC=1/2 BC
đề câu a phải là ADC là tgiac đều chứ ???
a) Ta có: góc DAC = BAC - BAD = 90 - 30 = 60 độ
Xét tgiac ADC có góc DAC = C = 60 độ => tgiac ADC đều (đpcm)
b) Tgiac ADC đều (cmt) => AD = AC (1)
Xét tgiac ABD có góc BAD = B = 30 độ
=> Tgiac ABD cân tại D => BD = AD (2)
(1), (2) => AC = BD
Lại có AC = CD (tgiac ADC đều)
=> AC = BD = DC
=> AC = 1/2 BC (đpcm)
Cho đa thức f(x)=ax2+ bx+ c
a) CMR: nếu a-b+c =0 thì đa thức có 1 nghiệm = -1
b) Với a,b,c thuộc Z và f(1), f(0), f(-1) đều chia hết cho 3
CMR: a,b,c đều chia hết cho 3
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm A. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho?
SỐ tam giác tạo được từ 3 đỉnh là \(C^3_{12}\)
Số tam giác có 3 đỉnh là 3 đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn
=>Có 12 tam giác
Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác
=>CÓ 8*12=96 tam giác
=>\(P=\dfrac{C^3_{12}-12-12\cdot8}{C^3_{12}}\)
Bài1:Tìm đa thức A(x) biết:
a,A(x)+(3x^2-4x+1)=5x-x^2
b,A(x)=5x^3-2x=x^3+x-1
Bài2:Cho tam giác ABC vuông tại A có góc C=30 độ,phân giác góc B cắt AC tại I.Trên tia BA lấy điểm D sao cho BD=BC.
a,CM:tam giác BID=tam giác BCI
b,CM:tam giác BIC;tam giác BCD là tam giác cân
c,Cho BC=8cm;tính độ dài AI(làm tròn dến hàng đơn vị)
em cần gấp mn giúp em vs ạ,vẽ hộ em hình luôn ạ
Cái này khá ez :>>
\(a,A\left(x\right)+\left(3x^2-4x+1\right)=5x-x^2\)
\(A\left(x\right)=5x-x^2-3x^2+4x-1\)
Ta có : \(9x-4x^2-1=0\)
Vậy phương trình vô nghiệm.
b, \(A\left(x\right)=5x^3-2x=x^3+x-1\)
\(A\left(x\right)=x^3+x-1-5x^3+2x\)
Ta có : \(-4x^3+3x-1=0\)
\(\left(-4x^2-4x+1\right)\left(x+1\right)=0\)
\(\left(2x-1\right)^2\left(x+1\right)=0\)
\(\orbr{\begin{cases}\left(2x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}}\)