chứng minh rằng: \(\frac{5}{2}=\frac{-5}{-2}\)
Chứng minh rằng T = \(\frac{1}{5^1}+\frac{2}{5^2}+...+\frac{99}{5^{99}}< \frac{5}{16}\)
Chứng minh rằng: P = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}< \frac{5}{16}\)
\(P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)
\(5P=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{99}{5^{98}}\)
\(\Rightarrow4P=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}=A-\frac{99}{5^{99}}\)
\(A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)
\(5A=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{97}}\)
\(\Rightarrow4A=5-\frac{1}{5^{98}}< 5\Rightarrow A< \frac{5}{4}\)
\(4P=A-\frac{99}{5^{99}}< A< \frac{5}{4}\Rightarrow P< \frac{5}{16}\)
Chứng minh rằng \(D=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}< \frac{1}{16}\)
Chứng Minh Rằng:
\(\frac{1}{5+1}+\frac{2}{5^2+2}+\frac{4}{5^4+1}+...+\frac{1024}{5^{1024}+1}< \frac{1}{4}\)
Bài 1: Chứng minh rằng: \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
Bài 2: Cho a,b,c > 0. Chứng minh \(\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
bài 1. ta có
\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng
Bài 2
ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)
Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)
\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)
Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad
\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0
\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0
\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)
Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)
=> đpcm tự kết luận
Chứng minh rằng \(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}< \frac{1}{24}\)
Đề sai, đề đúng phải là \(VT< \frac{1}{20}\)
Dễ dàng chứng minh đề sai, ta có:
\(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}>\frac{1}{5^2}+\frac{1}{5^3}=\frac{6}{125}>\frac{1}{24}\)
Còn chứng minh \(VT< \frac{1}{20}\) thì như sau:
\(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)
\(\Rightarrow5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2005}}\)
\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)
\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=A\)
\(\Rightarrow4A=\frac{1}{5}-\frac{1}{5^{2006}}< \frac{1}{5}\)
\(\Rightarrow A< \frac{1}{20}\)
chứng minh rằng A<\(\frac{1}{16}\) với A =\(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)
\(A=\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)
\(\Leftrightarrow5A=\frac{1}{5}+\frac{2}{5^2}+......+\frac{99}{5^{99}}\)
\(\Leftrightarrow5A-A=\left(\frac{1}{5}+\frac{2}{5^2}+....+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)
\(\Leftrightarrow4A=\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
Đặt : \(H=\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\)
\(\Leftrightarrow5H=1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\)
\(\Leftrightarrow5H-H=\left(1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)
\(\Leftrightarrow4H=1-\frac{1}{5^{99}}\)
\(\Leftrightarrow H=\frac{1}{4}-\frac{1}{4.5^{99}}< \frac{1}{4}\)
\(\Leftrightarrow4A< B< \frac{1}{4}\)
\(\Leftrightarrow A< \frac{1}{16}\left(đpcm\right)\)
CHỨNG MINH RẰNG:
A = \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}< \frac{1}{16}\)
5A=1/5=2/5^2+......+11/5^11
4A=1/5+1/5^2+......+1/5^11-11/5^12
20A=1+1/5+1/5^2+.....+1/5^10-11/5^11
16A=1-1/5^11+11/5^12-11/5^11
vi 1-1/5^11<1;11/5^12-11/5^11<0
16A<1
A<1/16
k cho minh nhe
Bonking
bn tham khảo đây nhé :
Câu hỏi của Khanh Mai Lê - Toán lớp 6 - Học toán với OnlineMath
mình tính siêu đúng
...
Cho S=\(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}\)
Chứng minh rằng \(S< \frac{1}{36}\)