Đề sai, đề đúng phải là \(VT< \frac{1}{20}\)
Dễ dàng chứng minh đề sai, ta có:
\(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}>\frac{1}{5^2}+\frac{1}{5^3}=\frac{6}{125}>\frac{1}{24}\)
Còn chứng minh \(VT< \frac{1}{20}\) thì như sau:
\(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)
\(\Rightarrow5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2005}}\)
\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)
\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=A\)
\(\Rightarrow4A=\frac{1}{5}-\frac{1}{5^{2006}}< \frac{1}{5}\)
\(\Rightarrow A< \frac{1}{20}\)