Biết ∫ sin 2 x - cos 2 x 2 d x = x + a b cos 4 x + C với a,b là các số nguyên dương, a b là phân số tối giản và C ∈ ℝ . Giá trị của a+b bằng
A. 5
B. 4
C. 2
D. 3
1)tính giá trị biểu thức:
p=tan 37 °+sin^2 28 °-3tan 52 °/cot 28 °+sin^2 62 °-cot 53 °
2) tìm góc nhọn a(alpha) biết sin a = cos a.
3) Cho biết x=3. Tính giá trị của các biểu thức sau :
a/ A=32018.cot2017x
b/ B= sin2x + 2 sin x . cos x - 5 cos2x
c/ D=1-(sin x + cos x)2 / cos2x
(mn ơi ai biết giúp mjh vs ạ) 😭
3. Tìm GTLN, GTNN:
a) \(y=2\sin^2x+3\sin x\cos x-2\cos^2x+5\)
b) \(y=\dfrac{3\sin x-\cos x+1}{\sin x-2\cos x+4}\)
c) \(y=\dfrac{2\left(x^2+6xy\right)}{1+2xy+y^2}\) biết x, y thay đổi thỏa mãn \(x^2+y^2=1\)
a.
\(y=\dfrac{3}{2}sin2x-2\left(cos^2x-sin^2x\right)+5=\dfrac{3}{2}sin2x-2cos2x+5\)
\(=\dfrac{5}{2}\left(\dfrac{3}{5}sin2x-\dfrac{4}{5}cos2x\right)+5=\dfrac{5}{2}sin\left(2x-a\right)+5\) (với \(cosa=\dfrac{3}{5}\))
\(\Rightarrow-\dfrac{5}{2}+5\le y\le\dfrac{5}{2}+5\)
b.
\(\Leftrightarrow y.sinx-2y.cosx+4y=3sinx-cosx+1\)
\(\Leftrightarrow\left(y-3\right)sinx+\left(1-2y\right)cosx=1-4y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y-3\right)^2+\left(1-2y\right)^2\ge\left(1-4y\right)^2\)
\(\Leftrightarrow11y^2+2y-9\le0\)
\(\Leftrightarrow-1\le y\le\dfrac{9}{11}\)
c.
Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)
\(\Rightarrow y=\dfrac{2\left(sin^2a+6sina.cosa\right)}{1+2sina.cosa+cos^2a}=\dfrac{1-cos2a+6sin2a}{1+sin2a+\dfrac{1+cos2a}{2}}=\dfrac{2-2cos2a+12sin2a}{3+2sin2a+cos2a}\)
\(\Leftrightarrow3y+2y.sin2a+y.cos2a=2-2cos2a+12sin2a\)
\(\Leftrightarrow\left(2y-12\right)sin2a+\left(y+2\right)cos2a=2-3y\)
Theo điều kiện có nghiệm của pt bậc nhất theo sin2a, cos2a:
\(\left(2y-12\right)^2+\left(y+2\right)^2\ge\left(2-3y\right)^2\)
\(\Leftrightarrow y^2+8y-36\le0\)
\(\Rightarrow-4-2\sqrt{13}\le y\le-4+2\sqrt{13}\)
Biết . \(\sin x+\cos x=\sqrt{2}\). Hỏi giá trị của \(\sin^4x+\cos^4x\)
\(sinx+cosx=\sqrt{2}\)
\(\Leftrightarrow\left(sinx+cosx\right)^2=2\)
\(\Leftrightarrow sin^2x+cos^2x+2.sinx.cosx=2\)
\(\Leftrightarrow1+2.sinx.cosx=2\)
\(\Leftrightarrow2.sinx.cosx=1\)
Khi đó \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2.sinx.cosx=1^2-1=0\)
bài 1: a)biết sin α=√3/2.tính cos α,tan α,cot α
b)cho tan α=2.tính sin α,cos α,cot α
c)biết sin α=5/13.tính cos,tan,cot α
bài 2
biết sin α x cos α=12/25.tính sin,cos α
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
1. Tìm x, biết:
a. \(\tan x+\cot x=2\)
b. \(\sin x.\cos x=\frac{\sqrt{3}}{4}\)
2.
a. Biết \(\tan\alpha=\frac{1}{3}\)Tính A=\(\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
b. Biết \(\sin\alpha=\frac{2}{3}\)Tính B=\(3.\sin^2\alpha+4.\cos^2\alpha\)
c. Tính C=\(\sin^210^o+\sin^220^o+\sin^270^o+\sin^280^o\)
d. Tính D=\(\tan20^o.\tan35^o.\tan55^o.\tan70^o\)
e. Tính E=\(\sin^6\alpha+\cos^6\alpha+3.\sin^2\alpha.\cos^2\alpha\)
f. Tính F=\(3.\left(\sin^3\alpha+\cos^3\alpha\right)-2.\left(\sin^6\alpha+\cos^6\alpha\right)\)
g. Tính G=\(\sqrt{\sin^4\alpha+4.\cos^2\alpha}+\sqrt{\cos^4\alpha+4.\sin^2\alpha}\)
Mọi người giúp mình với. Mình cảm ơn ạ!
Biết $\sin x+\cos x=m$.
a) Tính $\sin x \cos x$ và $\left|\sin ^{4} x-\cos ^{4} x\right|$ theo $m$.
b) Chứng minh rằng $|m| \leq \sqrt{2}$.
a) Ta có (\sin x+\cos x)^{2}=\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x=1+2 \sin x \cos x(sinx+cosx)2=sin2x+2sinxcosx+cos2x=1+2sinxcosx (*)
Mặt khác \sin x+\cos x=msinx+cosx=m nên m^{2}=1+2 \sin \alpha \cos \alpham2=1+2sinαcosα hay \sin \alpha \cos \alpha=\dfrac{m^{2}-1}{2}sinαcosα=2m2−1
Đặt A=\left|\sin ^{4} x-\cos ^{4} x\right|A=∣∣sin4x−cos4x∣∣. Ta có
A=\left|\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{2} x-\cos ^{2} x\right)\right|=|(\sin x+\cos x)(\sin x-\cos x)|A=∣∣(sin2x+cos2x)(sin2x−cos2x)∣∣=∣(sinx+cosx)(sinx−cosx)∣
\Rightarrow A^{2}=(\sin x+\cos x)^{2}(\sin x-\cos x)^{2}=(1+2 \sin x \cos x)(1-2 \sin x \cos x)⇒A2=(sinx+cosx)2(sinx−cosx)2=(1+2sinxcosx)(1−2sinxcosx)
\Rightarrow A^{2}=\left(1+\dfrac{m^{2}-1}{2}\right)\left(1-\dfrac{m^{2}-1}{2}\right)=\dfrac{3+2 m^{2}-m^{4}}{4}⇒A2=(1+2m2−1)(1−2m2−1)=43+2m2−m4
Vậy A=\dfrac{\sqrt{3+2 m^{2}-m^{4}}}{2}A=23+2m2−m4
b) Ta có 2 \sin x \cos x \leq \sin ^{2} x+\cos ^{2} x=12sinxcosx≤sin2x+cos2x=1 kết hợp với (*)(∗) suy ra
(\sin x+\cos x)^{2} \leq 2 \Rightarrow|\sin x+\cos x| \leq \sqrt{2}(sinx+cosx)2≤2⇒∣sinx+cosx∣≤2
Vậy |m| \leq \sqrt{2}∣m∣≤2.
Biết tg = 2. Tính sin a\(^2\)cộng 2 x sin x cos - 3cos\(^2\)
Cho sin alpha = 15/17. Tính cos alpha, tan alpha
Tính:
a, A= 4cos^2 alpha - 6 sin^2 alpha, biết sin alpha = 1/5
b, B= sin^2 x cos alpha, biết tan alpha + cot alpha = 3
Chứng minh rằng : sin x+ cos x \(\le\) 2( sin x^3+ cos x^3) biết 0<x<90
Biết sin x + cos x = m
a) Tìm \(\left|\sin^4-\cos^4\right|\)
b) Chứng minh rằng \(\left|m\right|\)\(\le\sqrt{2}\)
a: \(\left(sinx+cosx\right)^2=m^2\)
=>\(m^2=sin^2x+cos^2x+2\cdot sinx\cdot cosx\)
=>\(2\cdot sinx\cdot cosx=m^2-1\)
\(\left(sinx-cosx\right)^2=sin^2x+cos^2x-2\cdot sinx\cdot cosx\)
\(=1-\left(m^2-1\right)=2-m^2\)
\(\left|sin^4x-cos^4x\right|=\left|\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\right|\)
\(=\left|sin^2x-cos^2x\right|\)
\(=\left|\left(sinx+cosx\right)\left(sinx-cosx\right)\right|\)
\(=\left|m\left(2-m^2\right)\right|=\left|2m-m^3\right|\)
b: \(m=sinx+cosx\)
\(=\sqrt{2}\cdot\left(sinx\cdot\dfrac{\sqrt{2}}{2}+cosx\cdot\dfrac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\cdot sin\left(x+\dfrac{\Omega}{4}\right)\)
=>\(\left|m\right|=\sqrt{2}\cdot\left|sin\left(x+\dfrac{\Omega}{4}\right)\right|\)
\(0< =\left|sin\left(x+\dfrac{\Omega}{4}\right)\right|< =1\)
=>\(0< =\sqrt{2}\cdot\left|sin\left(x+\dfrac{\Omega}{4}\right)\right|< =\sqrt{2}\)
=>\(\left|m\right|< =\sqrt{2}\)