Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 8 2019 lúc 1:52

Gọi cạnh của hình lập phương là a.

Suy ra 

Cách 2. Gọi độ dài cạnh hình lập phương  A B C D . A ' B ' C ' D '  

Chọn hệ trục tọa độ Oxyz sao cho 

Khi đó, tọa độ các đỉnh: 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2017 lúc 8:56

Chọn B.

Quoc Thang
Xem chi tiết
Wan
Xem chi tiết
B.Trâm
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 3 2021 lúc 11:32

1.

\(\overrightarrow{MN}=\overrightarrow{MB'}+\overrightarrow{B'B}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\)

\(\overrightarrow{AC'}=\overrightarrow{AB'}+\overrightarrow{B'C'}=\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\)

\(\overrightarrow{MN}.\overrightarrow{AC'}=\left(\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\right)\left(\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\right)\)

\(=\dfrac{1}{2}AB^2-AA'^2+\dfrac{1}{2}AD^2=0\)

\(\Rightarrow MN\perp AC'\)

b.

\(\left\{{}\begin{matrix}AA'\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(ACC'A'\right)\Rightarrow BD\perp AC'\)

Tương tự: \(A'B\perp\left(ADC'B'\right)\Rightarrow A'B\perp AC'\)

\(\Rightarrow AC'\perp\left(A'BD\right)\)

Nguyễn Việt Lâm
18 tháng 3 2021 lúc 11:40

2.

Phương trình \(x^3-3x+2=0\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\) có nghiệm kép \(x=1\)

Nên giới hạn đã cho hữu hạn khi và chỉ khi phương trình: \(2\sqrt{1+ax^2}-bx-1=0\) có ít nhất 2 nghiệm \(x=1\) (tức là nghiệm bội 2 trở lên)

Thay \(x=1\) vào:

\(\Rightarrow2\sqrt{1+a}-b-1=0\Rightarrow2\sqrt{1+a}=b+1\)

\(\Rightarrow4\left(a+1\right)=b^2+2b+1\Rightarrow4a=b^2+2b-3\)

Khi đó:

\(\sqrt{4+4ax^2}-bx-1=0\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}-bx-1=0\)

\(\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}=bx+1\)

\(\Rightarrow4+\left(b^2+2b-3\right)x^2=b^2x^2+2bx+1\)

\(\Rightarrow\left(2b-3\right)x^2-2bx+3=0\)

\(\Rightarrow2bx^2-2bx-3x^2+3=0\)

\(\Rightarrow2bx\left(x-1\right)-\left(x-1\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2bx-3x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\\left(2b-3\right)x=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2b-3}\end{matrix}\right.\) \(\Rightarrow\dfrac{3}{2b-3}=1\Rightarrow b=3\Rightarrow a=3\)

\(c=\lim\limits_{x\rightarrow1}\dfrac{2\sqrt{1+3x^2}-3x-1}{x^3-3x+2}=\dfrac{1}{8}\)

Nguyễn Bá Minh
Xem chi tiết
Hoàng Phúc
Xem chi tiết
alibaba nguyễn
6 tháng 11 2016 lúc 6:36

Ta có từ n3 + 1 đến (n + 1)3 - 1 có

(n + 1)3 - 1 - n3 - 1 + 1 = 3n2 + 3n số có phần nguyên bằng n

Áp dụng vào cái ban đầu ta có

\(=\frac{3.1^2+3.1}{1}+\frac{3.2^2+3.2}{2}+...+\frac{3.2011^2+3.2011}{2011}\)

= 3.1 + 3 + 3.2 + 3 + ...+ 3.2011 + 3

= 3.2011 + 3(1 + 2 +...+ 2011)

= 6075231

Kamen rider kiva
5 tháng 11 2016 lúc 4:26

to thấy bài dễ mà 

alibaba nguyễn
5 tháng 11 2016 lúc 8:09

Dễ thì làm đi bạn

Chonbi
Xem chi tiết
Darlingg🥝
17 tháng 11 2019 lúc 10:24

Thế muốn giải thích thì liệt kê đau đầu =(

\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)

\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)

Đây là TH là số hữu tỉ còn lại.....

\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)

\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
Xem chi tiết
zZz Cool Kid_new zZz
8 tháng 8 2020 lúc 0:10

Thời gian được tính từ 7 giờ 30 phút từ sáng mai nha mọi người :D ai làm được bài nào ( 1 ý thôi cũng được ) thì " chốt đơn" 11h post lên nhé :D 

Khách vãng lai đã xóa
tth_new
8 tháng 8 2020 lúc 6:16

Bất đẳng thức học kì mà cho vậy có lẽ không phù hợp á bác Cool Kid.

Khách vãng lai đã xóa
tth_new
8 tháng 8 2020 lúc 6:19

4a) Xét hiệu 2 vế ta được:

\(\frac{\Pi\left(a+b\right)\left[\Sigma a\left(b-c\right)\right]^2+\left[3\Sigma a\left(b^2+c^2\right)+22abc\right]\Pi\left(a-b\right)^2}{4\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\ge0\)

Đề hơi dễ nhỉ bác :3

Khách vãng lai đã xóa
lê minh trang
Xem chi tiết