Biết rằng m = m 0 thì phương trình 2 sin 2 x - 5 m + 1 sin x + 2 m 2 + 2 m = 0 có đúng 5 nghiệm phân biệt thuộc - π 2 ; 3 π . Mệnh đề nào sau đây đúng?
1. Giải các phương trình sau:
a) \(\cos\left(x+15^0\right)=\dfrac{2}{5}\)
b) \(\cot\left(2x-10^0\right)=4\)
c) \(\cos\left(x+12^0\right)+\sin\left(78^0-x\right)=1\)
2. Định m để các phương trình sau có nghiệm:
\(\sin\left(3x-27^0\right)=2m^2+m\)
c.
\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)
\(\Leftrightarrow2cos\left(x+12^0\right)=1\)
\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)
2.
Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:
\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)
\(\Rightarrow-1\le m\le\dfrac{1}{2}\)
a.
\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)
b.
\(2x-10^0=arccot\left(4\right)+k180^0\)
\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)
2.
Phương trình \(sin\left(3x-27^o\right)=2m^2+m\) có nghiệm khi:
\(2m^2+m\in\left[-1;1\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m\le1\\2m^2+m\ge-1\end{matrix}\right.\)
\(\Leftrightarrow\left(m+1\right)\left(2m-1\right)\le0\)
\(\Leftrightarrow-1\le m\le\dfrac{1}{2}\)
Biết rằng phương trình (m – 2) x 2 – (2m + 5)x + m + 7 = 0 (m ≠ 2) luôn có nghiệm x 1 ; x 2 với mọi m. Tìm x 1 ; x 2 theo m
A. x 1 = − 1 ; x 2 = m + 7 m − 2
B. x 1 = 1 ; x 2 = - m + 7 m − 2
C. x 1 = 1 ; x 2 = m + 7 m − 2
D. x 1 = − 1 ; x 2 = - m + 7 m − 2
Phương trình (m – 2) x 2 – (2m + 5)x + m + 7 = 0 có a = m – 2; b = − (2m + 5);
c = m + 7
Vì a + b + c = m – 2 – 2m – 5 + m + 7 = 0 nên phương trình có hai nghiệm
x 1 = 1 ; x 2 = m + 7 m − 2
Đáp án: C
Cho phương trình \(x^2-5mx-4m=0\) ( với m là tham số). Chứng minh rằng khi phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thì \(x^2+5mx_2+m^2+14m+1>0\)
câu 1
cho 2(m-1)x +3= 2m-5
tìm m để phương trình trên bậc nhất một ẩn
b) với giá trị nào của m thì thì phương trình trên tương đương với phương trình sau :2x+5 =3(x+2)-1
câu 2 chứng tỏ rằng phương trình mx - 3 = 2m-x-1 luôn nhận x=2 là nghiệm với mọi m
câu 3
cho 2 số x,y khác 0 .chứng minh rằng \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
câu 1
cho 2(m-1)x +3= 2m-5
tìm m để phương trình trên bậc nhất một ẩn
b) với giá trị nào của m thì thì phương trình trên tương đương với phương trình sau :2x+5 =3(x+2)-1
câu 2 chứng tỏ rằng phương trình mx - 3 = 2m-x-1 luôn nhận x=2 là nghiệm với mọi m
câu 3
cho 2 số x,y khác 0 .chứng minh rằng \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
câu 1,
a, 2(m-1)x +3 = 2m -5
<=> 2x (m-1) - 2m +8 = 0 (1)
Để PT (1) là phương trình bậc nhất 1 ẩn thì: m - 1 \(\ne\)0 <=> m\(\ne\)1
b, giải PT: 2x +5 = 3(x+2)-1
<=> 2x + 5 -3x -6 + 1 =0
<=> -x = 0
<=> x = 0
Thay vào (1) ta được: -2m + 8 =0
<=> -2m = -8
<=> m = 4 (t/m)
vậy m = 4 thì pt trên tương đương.................
cho phương trình x^2+2(m+1)x-2x^4+m^2=0(m là tham số)
a, giải phương trình khi m=1
b, chứng minh rằng vs mọi m thì phương trình luôn có 2 no ohaan biệt
Biết rằng phương trình \(\left(m-3\right)x^2-2\left(m+1\right)x-m-3=0\)
có một nghiệm là −1, nghiệm còn lại
của phương trình là:
Phương trình có một nghiệm là -1.
\(\Rightarrow-2\left(m+1\right)=m-3-m-3\)
\(\Leftrightarrow m=2\)
Phương trình trở thành:
\(-x^2-6x-5=0\)
\(\Leftrightarrow-\left(x+1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_2=-5\end{matrix}\right.\)
Vậy nghiệm còn lại là \(x_2=-5\).
Chứng minh rằng với mọi giá trị của m thì
phương trình \(\text{ }mx^2-\left(3m+2\right)x+1=0\) luôn có nghiệm
phương trình \(\left(m^2+5\right)x^2-\)\(\left(\sqrt{3}m-2\right)x+1=0\)luôn vô nghiệm
Có bao nhiêu giá trị nguyên của m để phương trình: sin2x + 2 sin(x + π 4 ) - m = 0 có nghiệm.
A.3
B.4
C.5
D.6
Trong các khoảng sau, m thuộc khoảng nào để phương trình sin^2 x-(2m+1) sin x.cos x + 2m cos^2 x = 0 có nghiệm thuộc khoảng (π/4 ; π/3)?
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)