Giá trị của.
N=lim 4 n 2 + 1 - 8 n 3 + n 3 bằng:
A. + ∞ .
B. - ∞ .
C. 0.
D. 1.
Giá trị của C = l i m ( 2 n 2 + 1 ) 4 ( n + 2 ) 9 n 17 + 1 bằng:
A. + ∞
C. - ∞
C. 16
D. 1
Giá trị của C = l i m ( 2 n 2 + 1 ) 4 ( n + 2 ) 9 n 17 + 1 bằng
A. + ∞
B. - ∞
C. 16
D. 1
Giá trị của C = l i m ( 2 n 2 + 1 ) 4 ( n + 2 ) 9 n 17 + 1 bằng
A. + ∞
B. - ∞
C. 16
D. 1
giá trị của D = lim (căn bậc hai của n^2 +1) - (căn bậc ba của 3n^3 + 2)/(căn bậc bốn của 2n^4 + n + 2) - n =
giá trị của C = lim (n^3 + 1)/[n(2n+1)^2] =
Cai bai ben duoi bai nay y. Doc hieu chet lien. Ban nen xai go cong thuc de toi uu hon
\(C=\lim\limits\dfrac{n^3+1}{n\left(2n+1\right)^2}=\lim\limits\dfrac{n^3+1}{n\left(4n^2+4n+1\right)}=\lim\limits\dfrac{n^3+1}{4n^3+4n^2+n}=\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{1}{n^3}}{\dfrac{4n^3}{n^3}+\dfrac{4n^2}{n^3}+\dfrac{n}{n^3}}=\dfrac{1}{4}\)
giá trị của C = lim (căn bậc hai của n^2 +1)/(n+1) =
\(C=\lim\limits\dfrac{\sqrt{n^2+1}}{n+1}?\)
\(C=\lim\limits\dfrac{\sqrt{\dfrac{n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n}+\dfrac{1}{n}}=1\)
giá trị của F = lim (căn bậc bốn của n^4 - 2n + 1) + 2n/(căn bậc ba của 3n^3 + n) - n =
\(F=\lim\limits\dfrac{\sqrt[4]{n^4-2n+1}+2n}{\sqrt[3]{3n^3+n}-n}=\lim\limits\dfrac{\sqrt[4]{\dfrac{n^4}{n^4}-\dfrac{2n}{n^4}+\dfrac{1}{n^4}}+\dfrac{2n}{n}}{\sqrt[3]{\dfrac{3n^3}{n^3}+\dfrac{n}{n^3}}-\dfrac{n}{n}}=\dfrac{1+2}{3-1}=\dfrac{3}{2}\)
giá trị của giới hạn lim \(\left(\dfrac{1}{n^2}+\dfrac{2}{n^2}+...+\dfrac{n-1}{n^2}\right)\)
\(=\lim\left(\dfrac{1+2+...+n-1}{n^2}\right)=\lim\dfrac{n\left(n-1\right)}{2n^2}=\dfrac{1}{2}\)
Tìm tất cả các giá trị của tham số a để \(lim\dfrac{n^4-3n+4}{an^3+2n^2+1}=-\infty\)
\(\lim\dfrac{n^4-3n+4}{an^3+2n^2+1}=\lim\dfrac{n-\dfrac{3}{n^2}+\dfrac{4}{n^3}}{a+\dfrac{2}{n}+\dfrac{1}{n^3}}=+\infty.\left(\dfrac{1}{a}\right)\)
Giới hạn đã cho bằng \(-\infty\) khi và chỉ khi \(\dfrac{1}{a}< 0\Leftrightarrow a< 0\)
giá trị của E = lim (căn bậc hai của n^3 + 2n) + 1/(n+2) =
\(E=\lim\limits\dfrac{\sqrt{n^3+2n}+1}{n+2}=\lim\limits\dfrac{\dfrac{\left(n^3+2n\right)^{\dfrac{1}{2}}}{n}+\dfrac{1}{n}}{\dfrac{n}{n}+\dfrac{2}{n}}=\dfrac{\dfrac{n^{\dfrac{3}{2}}}{n}}{\dfrac{n}{n}}=0\)