\(\lim\dfrac{n^4-3n+4}{an^3+2n^2+1}=\lim\dfrac{n-\dfrac{3}{n^2}+\dfrac{4}{n^3}}{a+\dfrac{2}{n}+\dfrac{1}{n^3}}=+\infty.\left(\dfrac{1}{a}\right)\)
Giới hạn đã cho bằng \(-\infty\) khi và chỉ khi \(\dfrac{1}{a}< 0\Leftrightarrow a< 0\)
\(\lim\dfrac{n^4-3n+4}{an^3+2n^2+1}=\lim\dfrac{n-\dfrac{3}{n^2}+\dfrac{4}{n^3}}{a+\dfrac{2}{n}+\dfrac{1}{n^3}}=+\infty.\left(\dfrac{1}{a}\right)\)
Giới hạn đã cho bằng \(-\infty\) khi và chỉ khi \(\dfrac{1}{a}< 0\Leftrightarrow a< 0\)
Tên của một học sinh được mã hóa bởi số 1530. Biết rằng mỗi chữ số trong số này là giá trị của một trong các biểu thức A, H, N, O với :
\(A=\lim\limits\dfrac{3n-1}{n+2}\) \(H=\lim\limits\left(\sqrt{n^2+2n}-n\right)\)
\(N=\lim\limits\dfrac{\sqrt{n}-2}{3n+7}\) \(O=\lim\limits\dfrac{3^n-5.4^n}{1-4^n}\)
Hãy cho biết tên của học sinh này bằng cách thay các chữ số trên bởi các chữ kí hiệu biểu thức tương ứng ?
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+1}}\)
\(\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{3x^3+1}-\sqrt{2x^2+x+1}}{\sqrt[4]{4x^4+2}}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2-3x+4}-2x}{\sqrt{x^2+x+1}-x}\)
Tìm các giới hạn sau :
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}\)
c) \(\lim\limits_{x\rightarrow4^-}\dfrac{2x-5}{x-4}\)
d) \(\lim\limits_{x\rightarrow+\infty}\left(-x^3+x^2-2x+1\right)\)
e) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
f) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tìm các giới hạn sau :
a) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{4-\sqrt{x^2+16}}\)
b) \(\lim\limits_{x\rightarrow1}\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)
c) \(\lim\limits_{x\rightarrow+\infty}\dfrac{2x^4+5x-1}{1-x^2+x^4}\)
d) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{4x^2-x+1}}{1-2x}\)
e) \(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+1}-x\right)\)
f) \(\lim\limits_{x\rightarrow2^+}\left(\dfrac{1}{x^2-4}-\dfrac{1}{x-2}\right)\)
Tính các giới hạn sau (\(n\rightarrow+\infty\) )
a) \(\lim\limits\dfrac{\left(-3\right)^n+2.5^n}{1-5^n}\)
b) \(\lim\limits\dfrac{1+2+3+....+n}{n^2+n+1}\)
c) \(\lim\limits\left(\sqrt{n^2+2n+1}-\sqrt{n^2+n-1}\right)\)
lim \(\frac{1}{\sqrt[4]{64n^4+3n^3-2n^2+1}-\sqrt{n^2-3n+5}-3n}\)
Tìm các giới hạn sau :
a) \(\lim\limits_{x\rightarrow-2}\dfrac{x+5}{x^2+x-3}\)
b) \(\lim\limits_{x\rightarrow3^-}\sqrt{x^2+8x+3}\)
c) \(\lim\limits_{x\rightarrow+\infty}\left(x^3+2x^2\sqrt{x}-1\right)\)
d) \(\lim\limits_{x\rightarrow-1}\dfrac{2x^3-5x-4}{\left(x+1\right)^2}\)
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số
f(x) = \(\left\{{}\begin{matrix}\dfrac{2x^3-11x^2+17x-6}{x^2-x-6},x\ne3\\m^3-2m^2-3m+7,x=3\end{matrix}\right.\) liên tục tại x=3