\(=lim\frac{1}{2\sqrt{2}n\sqrt[4]{1+\frac{3}{64n}-\frac{1}{32n^2}+\frac{1}{64n^4}}-n\sqrt{1-\frac{3}{n}+\frac{5}{n^2}}-3n}\)
\(=lim\frac{1}{2\sqrt{2}n-n-3n}=lim\frac{1}{\left(2\sqrt{2}-4\right)n}=0\)
\(=lim\frac{1}{2\sqrt{2}n\sqrt[4]{1+\frac{3}{64n}-\frac{1}{32n^2}+\frac{1}{64n^4}}-n\sqrt{1-\frac{3}{n}+\frac{5}{n^2}}-3n}\)
\(=lim\frac{1}{2\sqrt{2}n-n-3n}=lim\frac{1}{\left(2\sqrt{2}-4\right)n}=0\)
Tìm tất cả các giá trị của tham số a để \(lim\dfrac{n^4-3n+4}{an^3+2n^2+1}=-\infty\)
Tên của một học sinh được mã hóa bởi số 1530. Biết rằng mỗi chữ số trong số này là giá trị của một trong các biểu thức A, H, N, O với :
\(A=\lim\limits\dfrac{3n-1}{n+2}\) \(H=\lim\limits\left(\sqrt{n^2+2n}-n\right)\)
\(N=\lim\limits\dfrac{\sqrt{n}-2}{3n+7}\) \(O=\lim\limits\dfrac{3^n-5.4^n}{1-4^n}\)
Hãy cho biết tên của học sinh này bằng cách thay các chữ số trên bởi các chữ kí hiệu biểu thức tương ứng ?
Tính lim (\(\frac{1}{2\cdot4}+\frac{1}{5\cdot7}+..+\frac{1}{\left(3n-1\right)\cdot\left(3n+1\right)}\))
Dãy số nào sau đây có giới hạn bằng 0 ?
A. \(u_n=\frac{n^2-2}{5n+3n^2}\)
B. \(u_n=\frac{n^2-2n}{5n+3n^2}\)
C. \(u_n=\frac{1-2n}{5n+3n^2}\)
D. \(u_n=\frac{1-2n^2}{5n+3n^2}\)
Tính 1) \(lim\frac{\sqrt{n}-2}{n+\sqrt{n}+1}\)
2) \(lim\frac{\sqrt[3]{n^3+n}+2}{n+2}\)
3)\(lim\frac{\sqrt[3]{n^3+1}-1}{\sqrt{n^2+3}-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+1}}\)
\(\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
lim \(\frac{\sqrt{4n^2+1}-\sqrt{n+2}}{2n-3}\) bằng
A. \(\frac{3}{2}\)
B. 2
C. 1
D. \(+\infty\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{3x^3+1}-\sqrt{2x^2+x+1}}{\sqrt[4]{4x^4+2}}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2-3x+4}-2x}{\sqrt{x^2+x+1}-x}\)
Tính các giới hạn sau (\(n\rightarrow+\infty\) )
a) \(\lim\limits\dfrac{\left(-3\right)^n+2.5^n}{1-5^n}\)
b) \(\lim\limits\dfrac{1+2+3+....+n}{n^2+n+1}\)
c) \(\lim\limits\left(\sqrt{n^2+2n+1}-\sqrt{n^2+n-1}\right)\)