với x 0 và x ≠ 9 thì giá trị biểu thức a = (x-3 căn x) / (căn x -3)
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
cho A=cănx/căn(x+3)+2cănx/căn(x-3)-3x+9/x-9,với x lớn hơn bằng 0,x khác 9
a rút gọn biểu thức A
b tìm x để a=1/3
c tìm giá trị lớn nhất của A
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.
`a)A=sqrtx/(sqrtx+3)+(2sqrtx)/(sqrtx-3)-(3x+9)/(x-9)(x>=0,x ne 9)`
`=(sqrtx(sqrtx-3)+2sqrtx(sqrtx+3)-3x-9)/(x-9)`
`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`
`=(3sqrtx-9)/(x-9)`
`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`
`=3/(sqrtx+3)`
`b)A=1/3`
`<=>3/(sqrtx+3)=1/3`
`<=>sqrtx+3=9`
`<=>sqrtx=6`
`<=>x=36(tm)`
`c)A=3/(sqrtx+3)`
`sqrtx+3>=3>0`
`=>A<=3/3=1`
Dấu "=" xảy ra khi `x=0`
Cho hàm số: y= f(x) = -2x+5 (1)
a)Vẽ đô thị hàm số (1) trên mặt phẳng tọa độ
b)Tìm tọa độ giao điểm I của hai hàm số y= -2x+5 và y= x-1 bằng phương pháp tính
(15 căn x-11/x+2 căn x -3) + ( 3 căn x -2/1- căn x) - ( 2 căn x +3/ căn x +3)
a. rút gọn biểu thức
b. tìm giá trị lớn nhất của biểu thức và giá trị của x tương ứng
cho biểu thức A= 1 phần 2 căn x - 2 - 1 phần 2 căn x +2 + căn x phần 1-x với x lớn hơn hoặc = 0; x khác 1
a/ rút gọn A
b/tính giá trị của A với x= 4 phần 9
c/ tính giá trị của x để giá trị tuyệt đối của A= 1 phần 3
a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:
Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))
Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)
b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5
Vậy, khi x = 4/9, giá trị của A là 6/5.
c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3
Vì A là một số âm, ta có: -√x/(x - 1) = -1/3
Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0
Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2
Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.
Cho biểu thức M = căn x/ cănx -2 + 4 cănx -4/ căn x.( cănx - 2 ) với x>0 và x khác 4
a) rút gọn biểu thức M
b) tính giá trị của M khi x= 3+ 2 căn2
a: \(M=\dfrac{x+4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
Cho -3/2<=x<=3/2 và căn(3+2x) - căn(3-2x)=a.tính giá trị biểu thức c=căn[6+ 2 căn(9-4x^2)]/x theo a
cho a=x+ căn x+10/x-9+1/ căn x -3 và b=căn x+1(với x lớn hơn hoặc bằng 0 x khác 9) tìm giá trị của x để a>b
\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)
Để A>B thì A-B>0
=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)
=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)
=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)
=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)
TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)
TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Với giá trị nào của x thì các biểu thức sau có nghĩa?
a,Căn 2(x + 3)
b,Căn x^2 - x + 1
c,Căn x -1 / căn x + 1 (dấu căn của mình x)
với giá trị nào của x thì biểu thức có nghĩa:
f) căn bậc tất cả 2x-1/2-x
g) căn bậc x-3/ căn bậc 5-x h
h) căn bậc x-1.căn bậc x+5
f: ĐKXĐ: \(\dfrac{2x-1}{2-x}>=0\)
=>\(\dfrac{2x-1}{x-2}< =0\)
=>\(\dfrac{1}{2}< =x< 2\)
g: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>0\end{matrix}\right.\Leftrightarrow3< =x< 5\)
h: ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\x+5>=0\end{matrix}\right.\Leftrightarrow x>=1\)