Cho vecto v → = a , b sao cho khi tịnh tiến độ thị hàm số y = f x = x 2 - x + 1 x - 1 theo vecto v → ta nhận đồ thị hàm số y = g x = x 2 x + 1
Khi đó tích a.b bằng
A. 1
B. 5
C. 6
D. 4
Cho vectơ v → = a ; b sao cho khi tịnh tiến đồ thị hàm số y = f x = x 2 - x + 1 x - 1 theo véc tơ v → ta nhận đồ thị hàm số y = g x = x 2 x + 1 . Khi đó tích a.b bằng
A. 1
B. 5
C. 6
D. 4
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Cho mặt phẳng tọa độ Oxy cho 4 điểm A(-1;2) B(3;-4) C(0;-5) D(-6;7)
a) tìm ảnh A, B, C, D qua phép tịnh tiến thao vecto v=(-2;1)
b) Tìm E, F sao cho TAB(E)=C ; TDC (F)=D
c) gọi I là trung điểm của AB. Tìm G sao cho I là ảnh của G qua phép tịnh tiến theo vecto DC
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v → ( 1 ; 1 ) biến điểm A(0;2) thành A’ và biến điểm B(-2;1) thành B’, khi đó:
A. A’B’ = √5
B. A’B’ = √10
C. A’B’ = √11
D. A’B’ = √12
Phép tịnh tiến theo vecto v → ( 1 ; 1 ) biến A(0; 2) thành A’(1; 3) và biến B(-2; 1) thành B’(-1; 2) ⇒ A’B’ = √5
Đáp án A
1. Phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thằng d: x+y=0 thành d':x+y-4=0. Biết \(\overrightarrow{v}\) cùng phương với vecto \(\overrightarrow{u}\) =(1;1). Tính độ dài vecto \(\overrightarrow{v}\)
2. Cho 2 đường thẳng d:x+y-1=0 và d':x+y-5=0. Phép tịnh tiến theo vecto \(\overrightarrow{u}\) biến đường thẳng d thành d'. Khi đó độ dài nhỏ nhất của vecto \(\overrightarrow{u}\)là bao nhiêu?
3. Cho 3 đường thẳng d:2x+y+3=0, d':2x+y-1=0. Có bao nhiêu vecto \(\overrightarrow{v}\)có độ dàu bằng 2 sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\)biến d thành d'
4. Cho 2 đường thẳng d; x+y+3=0, d':x+y+m=0. Biết có duy nhất một vecto \(\overrightarrow{v}\)có độ dài bằng \(\sqrt{2}\) sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến d thành d'. Tìm m
1.
Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0
Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)
Thay vào pt d' ta được:
\(a+a-4=0\Rightarrow a=2\)
\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)
\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)
2.
Gọi \(\overrightarrow{u}=\left(a;b\right)\)
Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)
Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)
Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)
Ta có:
\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)
\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)
3.
Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=4\) (1)
Gọi \(A\left(-1;-1\right)\) là 1 điểm thuộc d
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)
Ta có: \(\left\{{}\begin{matrix}x_{A'}=-1+a\\x_{B'}=-1+b\end{matrix}\right.\)
Thay vào pt d':
\(2\left(a-1\right)+2\left(b-1\right)-1=0\)
\(\Leftrightarrow2a+2b=5\Rightarrow b=\frac{5-2a}{2}\)
Thế vào (1):
\(a^2+\left(\frac{5-2a}{2}\right)^2=4\)
\(\Leftrightarrow8a^2-20a+9=0\)
Pt trên có 2 nghiệm pb nên có 2 vecto thỏa mãn
Cho (p) y=4x2
a)Gọi (P1) là đường có được khi tịnh tiến (P) lên trên 4 đơn vị . (P1) là đồ thị của hàm số nào?
b) Gọi (P2) là đường khi tịnh tiến (P) sang phải 2 đơn vị. (P2) là đồ thị của hàm số nào ?
giúp e vs. E mới học
Hàm \(y=f\left(x\right)\) có đồ thị (C):
\(\Rightarrow\) Khi tịnh tiến lên a đơn vị ta sẽ được đồ thị hàm \(y=f\left(x\right)+a\)
Khi tịnh tiến xuống dưới a đơn vị ta được đồ thị hàm \(y=f\left(x\right)-a\)
- Khi tịnh tiến sang phải a đơn vị ta sẽ được đồ thị hàm \(y=f\left(x-a\right)\)
- Khi tịnh tiến sang trái a đơn vị sẽ được đồ thị hàm \(y=f\left(x+a\right)\)
Do đó:
Khi tịnh tiến (P) lên 4 đơn vị ta được đồ thị hàm \(y=4x^2+4\)
Khi tịnh tiến (P) sang phải 2 đơn vị ta được đồ thị hàm: \(y=4\left(x-2\right)^2=4x^2-16x+16\)
Trong mặt phẳng tọa độ cho điểm M(-10;1) và điểm M’(3;8). Phép tịnh tiến theo vecto v → biến M thành M’, thì tọa độ vecto v → là:
A. v → = ( - 13 ; 7 )
B. v → ( 24 ; - 7 )
C. v → ( 13 , 7 )
D. v → ( - 3 ; - 7 )
Tịnh tiến đồ thị y=f(x)=x3 + 3x +1 theo vecto v, ta nhận được đồ thị hàm số y=g(x)=x3 - 3x2 +6x -1. Tìm tọa độ vecto v.
cho a(3;0), b(-2;4), c(-4;5) phép tịnh tiến theo vecto v(1;4) biến tam giác abc thành tam giác a'b'c' tìm tọa độ trọng tâm tam giác abc
Gọi G là trọng tâm ABC \(\Rightarrow G\left(-1;3\right)\)
\(T_{\overrightarrow{v}}\left(G\right)=G'\Rightarrow\left\{{}\begin{matrix}x'=-1+1=0\\y'=3+4=7\end{matrix}\right.\)
\(\Rightarrow G'\left(0;7\right)\)