tìm x,y biết
yx-x=x+4
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Cho x,y khác 0 tìm Min
P=x^4/y^4 + y^4/x^4 - x^2/y^2 - y^2/x^2 + x/y + y/x
a) Tìm x,y biết x/5 =y/3 và x^2+ y^2 =4
b) Tìm x biết x-2/x-1 = x+4/x+1
cảm ơn mọi người nhìu nha!!!
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Tìm GTNN của P=\(\dfrac{x^4}{y^4}+\dfrac{y^4}{x^4}-\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\dfrac{x}{y}+\dfrac{y}{x}\). Với x, y ≠ 0
Đặt \(\dfrac{x}{y}+\dfrac{y}{x}=t\Rightarrow\left|t\right|\ge2\)
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}=t^2-2\)
\(\dfrac{x^4}{y^4}+\dfrac{y^4}{x^4}=\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)^2-2=\left(t^2-2\right)^2-2=t^4-4t^2+2\)
\(\Rightarrow P=f\left(t\right)=t^4-4t^2+2-\left(t^2-2\right)+t\)
\(f\left(t\right)=t^4-5t^2+t+4\)
Xét hàm \(f\left(t\right)=t^4-5t^2+t+4\) trên \((-\infty;-2]\cup[2;+\infty)\)
\(f'\left(t\right)=g\left(t\right)=4t^3-10t+1\)
\(g\left(t\right)\) bậc 3 nên có tối đa 3 nghiệm
\(g\left(-2\right)=-11\) ; \(g\left(0\right)=1\)
\(\Rightarrow g\left(-2\right).g\left(0\right)< 0\Rightarrow g\left(t\right)=0\) có nghiệm \(t_1\in\left(-2;0\right)\)
\(g\left(1\right)=-5< 0\Rightarrow g\left(0\right).g\left(1\right)< 0\Rightarrow g\left(t\right)\) có nghiệm \(t_2\in\left(0;1\right)\)
\(g\left(2\right)=13\Rightarrow g\left(1\right).g\left(2\right)< 0\Rightarrow g\left(t\right)\) có nghiệm \(t_3\in\left(1;2\right)\)
Dấu \(f'\left(t\right)\):
Từ đây ta thấy \(f\left(t\right)\) nghịch biến trên \((-\infty;-2]\) và đồng biến trên \([2;+\infty)\)
Hay GTNN của \(f\left(t\right)\) sẽ rơi vào \(t=-2\) hoặc \(t=2\)
\(f\left(-2\right)=-2\) ; \(f\left(2\right)=2\)
\(\Rightarrow f\left(t\right)_{min}=-2\) khi \(t=-2\) hay \(P_{min}=-2\) khi \(x=-y\)
Tìm y :
a) y x 4 + y x 6 = 570
b) y x 5 + 4 x y = 918
Y × 4 + 6 × Y = 570
Y × ( 4 + 6 ) = 570
Y × 10 = 570
Y = 570 : 10
Y = 57
Y × 5 + 4 × Y = 918
Y × ( 5 + 4 ) = 918
Y × 9 = 918
Y = 918 : 9
Y = 102
Cho |x-3|=4 và y=|x|+6 .x,y là số nguyên. tìm x và y , tìm x+y
x>0 y>0 x+y=4
tìm min E cho x>0 y>0 và x+y=4 tìm min E= (x+1/x)^2 +(y+1/y)^2 +2018
Caâu 29. Cho \(\dfrac{x}{3}\) =\(\dfrac{y}{4}\) và x.y12 Kết quả tìm được của x và y là:
A. x = 3; y = 4 và x = -3; y = - 4
B. x = 2; y = 4 và x = -2; y = - 4
C. x = 1; y = 4 và x = -1; y = - 4
D. x = 4; y = 5 và x = -4; y = - 5
1/tính giá trị x+y biết x-3/y-5=3/5 và y-x=4
2/tìm x biết 15-x/7=x+7/4
3/tìm x,y,z biết 4/3x-2y=3/2z-4x=2/4y-3z và x+y-z=-10
4/tìm x,y,z biết x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50
mấy bạn giúp mình nha mình cần gấp khoảng 1 giờ đã nộp bài gồi