Giả sử x 1 , x 2 là hai nghiệm của phương trình bậc hai a x 2 + bx + c = 0 có ∆ ’ = 0. Điều nào sau đây là đúng?
A . x 1 = x 2 = b 2 a B . x 1 = x 2 = - b ' a C . x 1 = x 2 = - b a D . x 1 = x 2 = - b ' 2 a
Cho tam thức bậc hai \(f\left(x\right)=x^2+bx+c\). Giả sử phương trình \(f\left(x\right)=x\) có \(2\) nghiệm phân biệt. Chứng minh rằng nếu \(\left(b+1\right)^2>4\left(b+c+1\right)\) thì phương trình \(f\left(f\left(x\right)\right)=x\) có \(4\) nghiệm phân biệt.
Giả sử x và y là hai số thỏa mãn x> y và xy = 1. Tìm GTNN của biểu thức: A=\(\dfrac{x^2+y^2}{x-y}\)
Giả sử x và y là hai đại lượng tỉ lệ thuận. x1,x2 là hai giá trị khác nhau của x ; y(1),y(2) là hai giá trị tương ứng của y.
Tính x(1),y(1) biết y(1)−x(1)=−2,x(2)=−4,y(2)=3
x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
suy ra x1=x2.y1/y2 = 2.(-3/4):1/7 =-21/2
b) x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau)
Thay số ta có:
x1/(-4) = y1/3=-2/(3-(-4))
<=> x1/(-4) = y1/3=-2/7
suy ra:
x1 = (-4).(-2/7)=8/7
y1 = 3.(-2/7)=-6/7
tệ thật
x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau)
Thay số ta có:
x1/(-4) = y1/3=-2/(3-(-4))
<=> x1/(-4) = y1/3=-2/7
suy ra:
x1 = (-4).(-2/7)=8/7
y1 = 3.(-2/7)=-6/7
ủng hộ nha mk trả lời dầu tiên đó!!!
x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
suy ra x1=x2.y1/y2 = 2.(-3/4):1/7 =-21/2
b) x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau)
Thay số ta có:
x1/(-4) = y1/3=-2/(3-(-4))
<=> x1/(-4) = y1/3=-2/7
suy ra:
x1 = (-4).(-2/7)=8/7
y1 = 3.(-2/7)=-6/7
coppy mà đầu tiên ak
Trong không gian Oxyz, cho hai đường thẳng ∆ 1 : x - 4 3 = y - 1 - 1 = z + 5 - 2 và ∆ 2 : x - 2 1 = y + 3 3 = z 1 . Giả sử M ∈ ∆ 1 , N ∈ ∆ 2 sao cho MN là đoạn vuông góc chung của hai đường thẳng ∆ 1 và ∆ 2 . Tính M N → .
A. M N → ( 5 ; - 5 ; 10 )
B. M N → ( 2 ; - 2 ; 4 )
C. M N → ( 3 ; - 3 ; 6 )
D. M N → ( 1 ; - 1 ; 2 )
Đáp án B
Gọi M 4 + 3 t ; 1 - t ; - 5 - 2 t và N 2 + u ; - 3 + 3 u ; u suy ra M N ¯ = - 2 + u - 3 t ; - 4 + 3 u + t ; u + 2 t + 5
Mặt khác M N → ⊥ u ∆ 1 → M N → ⊥ u ∆ 2 → ⇔ 3 - 2 + u - 3 t + 4 - 3 u - t - 2 u - 4 t - 10 - 2 + u - 3 t - 12 + 9 u + 3 t + u + 2 t + 5 = 0 ⇔ - 2 u - 14 t = 12 11 u + 2 t = 9 ⇔ u = 1 t = - 1
Suy ra M N → ( 2 ; - 2 ; 4 ) .
Trong không gian Oxyz, cho hai đường thẳng ∆ 1 : x - 4 3 = y - 1 - 2 = z + 5 - 1 và ∆ 2 : x - 2 1 = y + 3 3 = z 1 . Giả sử M ∈ ∆ 1 , N ∈ ∆ 2 sao cho MN là đoạn vuông góc chung của hai đường thẳng ∆ 1 và ∆ 2 . Tính M N →
A. M N → = ( 5 ; - 5 ; 10 )
B. M N → = ( 2 ; - 2 ; 4 )
C. M N → = ( 3 ; - 3 ; 6 )
D. M N → = ( 1 ; - 1 ; 2 )
Giả sử phương trình Ax2+Bx+C=0 có hai nghiệm x1, x2 thì x + x=-B/A, x*x=C/A. Cho a khác 0 và giả sử phương trình x2 - ax - 1/2a2. Chứng minh rằng x14+x24 >=2+√2
đoạn sau là x2-ax-1/(2a2)=0 nha, viết thiếu.
@nguyenthanhtuan cái này là chứng minh mà bạn.
giả sử phương trình bậc 2 : x^2 + ax + b + 1 = 0 có hai nghiệm nguyên dương. chứng minh rằng : a^2 + b^2 là 1 hợp số
gọi x1,x2 là hai nghiệm \(\Rightarrow x_1+x_2=-a\) và \(x_1x_2=b+1\)
Ta có : \(a^2+b^2=\left[-\left(x_1+x_2\right)\right]^2+\left(x_1x_2-1\right)^2\)
\(\Rightarrow a^2+b^2=\left(x_1^2+x_2^2+2x_1x_2\right)+\left(x_1^2x_2^2-2x_1x_2+1\right)\)
\(\Rightarrow a^2+b^2=x_1^2+x_2^2+x_1^2x_2^2+1=\left(x_1^2+1\right)\left(x_2^2+1\right)\)là hợp số
Trong không gian Oxyz, cho hai đường thẳng Δ 1 : x - 4 3 = y - 1 - 2 = z + 5 - 1 và Δ 2 : x - 2 1 = y + 3 3 = z 1 . Giả sử M ∈ Δ 1 , N ∈ Δ 2 sao cho MN là đoạn vuông góc chung của hai đường thẳng ∆ 1 và ∆ 2 . Tính M N →
A. M N → 5 ; - 5 ; 10
B. M N → 2 ; - 2 ; 4
C. M N → 3 ; - 3 ; 6
D. M N → 1 ; - 1 ; 2
Giả sử đồ thị hàm số y=x3 -3mx2+3(m+6)x+1 có hai cực trị. khi đó đường thẳng qua hai điểm cực trị có phương trình là:
Giả sử đồ thị hàm số y=x3 -3mx2+3(m+6)x+1 có hai cực trị. khi đó đường thẳng qua hai điểm cực trị có phương trình là: