Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 1:27

Đề thiếu dữ liệu để xác định độ dài SA rồi bạn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2019 lúc 11:20

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 8 2019 lúc 3:27

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2019 lúc 18:28

Chọn C

Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.

Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.

Trong tam giác vuông SAB' ta có:

Bé Đầu Đất
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 5:02

Câu 1: B

Câu 2: B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2017 lúc 14:46

Chọn A.

Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM  ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.

Buddy
Xem chi tiết
Bùi Nguyên Khải
21 tháng 8 2023 lúc 18:47

THAM KHẢO:

Bài tập 1 trang 56 Toán 11 tập 2 Chân trời

CD//AB nên góc giữa SB và CD là góc giữa AB và SB, \(\widehat{ABS}\)

CB//AD nên góc giữa SD và CB là góc giữa SD và AD, \(\widehat{ADS}\)

Ta có: tan\(\widehat{ABS}\)=tan\(\widehat{ADS}\)=\(\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

Suy ra \(\widehat{ABS}\)=\(\widehat{ADS}\)=\(\dfrac{\pi}{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2019 lúc 15:27

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là tâm của hình bình hành ABCD. Ta có:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Từ (1) và (2) suy ra:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

Phạm Đức Huy
Xem chi tiết
Hoàng Tử Hà
18 tháng 4 2021 lúc 18:44

Đáy là hình vuông hay chữ nhật bạn? Hình chữ nhật sao có các cạnh bằng nhau và bằng a được? 

Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2022 lúc 23:54

c.

Từ câu b ta có AICD là hình vuông \(\Rightarrow CI\perp AB\)

Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp CI\)

\(\Rightarrow CI\perp\left(SAB\right)\)

Lại có \(CI\in\left(SCI\right)\Rightarrow\left(SCI\right)\perp\left(SAB\right)\)

d.

I là trung điểm AB \(\Rightarrow CI\) là trung tuyến ứng với AB

Lại có \(CI=AD=a\) (AICD là hình vuông) \(\Rightarrow CI=\dfrac{1}{2}AB\)

\(\Rightarrow\Delta ACB\) vuông tại C

\(\Rightarrow BC\perp AC\) (1)

Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\) (2)

(1);(2) \(\Rightarrow BC\perp\left(SAC\right)\)

\(BC\in\left(SBC\right)\Rightarrow\left(SBC\right)\perp\left(SAC\right)\)

Nguyễn Việt Lâm
3 tháng 3 2022 lúc 23:55

undefined

Nguyễn Việt Lâm
3 tháng 3 2022 lúc 23:57

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)

\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)

\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{3}\Rightarrow\widehat{SDA}=60^0\)

b.

Gọi E là giao điểm AC và DI

I là trung điểm AB \(\Rightarrow AI=\dfrac{1}{2}AB=a\Rightarrow AI=DC\)

\(\Rightarrow AICD\) là hình bình hành

Mà \(\widehat{A}=90^0\Rightarrow AICD\) là hình chữ nhật

\(AI=AD=a\) (hai cạnh kề bằng nhau) \(\Rightarrow AICD\) là hình vuông

 \(\Rightarrow AC\perp DI\) tại E

Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp DI\Rightarrow DI\perp\left(SAE\right)\)

Mà \(DI=\left(SDI\right)\cap\left(ABCD\right)\Rightarrow\widehat{SEA}\) là góc giữa (SDI) và (ABCD)

\(AE=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AD^2+CD^2}=\dfrac{a\sqrt{2}}{2}\)

\(\Rightarrow tan\widehat{SEA}=\dfrac{SA}{AE}=\dfrac{\sqrt{6}}{2}\Rightarrow\widehat{SEA}\approx50^046'\)