Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết

loading...

Xét \(\Delta\)MPQ và \(\Delta\)PMN có: 

MP chung

\(\widehat{QPM}\) = \(\widehat{PMN}\)  (2 góc so le trong)

\(\widehat{QMP}\) = \(\widehat{NPM}\) (2 góc so le trong)

\(\Rightarrow\) \(\Delta\)MPQ = \(\Delta\)PMN (g-c-g)

\(\Rightarrow\) PQ = MN; MQ = PN (đpcm)

b, Xét \(\Delta\)MPQ và \(\Delta\)PMN có:

         MP chung

         MN = PQ 

  \(\widehat{QPM}\) = \(\widehat{PMN}\) ( 2 góc so le trong)

\(\Delta\)MPQ = \(\Delta\)PMN ( cạnh góc cạnh)

\(\Rightarrow\) MQ = NP (đpcm)

⇒ \(\widehat{QMP}\) = \(\widehat{NPM}\) 

   Mà hai góc \(\widehat{QMP}\) và \(\widehat{NPM}\) ở vị trí so le trong và bằng nhau nên:

   QM // NP (đpcm)

Nguyễn Hữu Quang
Xem chi tiết
shiwiy ♪
28 tháng 7 2023 lúc 9:25

bài 1 :

a) Ta có MQ//NP (theo giả thiết).

Chứng minh MN = PQ:
Vì MN//PQ và MQ//NP, ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).

Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM

Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP

Từ đó suy ra: MN = PQ.

Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ

Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP

Từ đó suy ra: MQ = NP.

b) Ta có MN = PQ (theo giả thiết).

Chứng minh MQ//NP:
Giả sử MQ không // NP. Khi đó, MQ và NP sẽ cắt nhau tại một điểm O.

Vì MN//PQ và MQ//NP, nên ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).

Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM

Từ đó suy ra: MN/MQ = NP/NP

Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP

Từ đó suy ra: MN = PQ.

Điều này mâu thuẫn với giả thiết MN = PQ (đã cho). Vậy giả sử MQ không // NP là sai.

Do đó, ta kết luận rằng MQ//NP.

Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ

Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP

Từ đó suy ra: MQ = NP.

bài 2 :

a) Ta có MN = MQ và góc M = 50 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc N = góc Q.

Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ

Thay giá trị vào, ta có:
50 độ + góc N + 90 độ + góc N = 360 độ

Simplifying the equation:
140 độ + 2góc N = 360 độ

Trừ 140 độ từ hai phía:
2góc N = 220 độ

Chia cho 2:
góc N = 110 độ

Vậy số đo góc MQN là 110 độ.

b) Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.

Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ

Thay giá trị vào, ta có:
góc M + 110 độ + 90 độ + góc M = 360 độ

Simplifying the equation:
2góc M + 200 độ = 360 độ

Trừ 200 độ từ hai phía:
2góc M = 160 độ

Chia cho 2:
góc M = 80 độ

Vậy số đo góc MQP là 80 độ.

c) Để chứng minh MP vuông góc với NQ, ta cần chứng minh rằng góc MPN + góc NQP = 90 độ.

Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.

Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ

Thay giá trị vào, ta có:
góc M + góc N + 90 độ + góc M = 360 độ

Simplifying the equation:
2góc M + góc N = 270 độ

Vì góc M = góc Q, nên ta có:
2góc M + góc M = 270 độ

Nguyễn Hữu Quang
Xem chi tiết
ngngoc
Xem chi tiết
ILoveMath
4 tháng 12 2021 lúc 21:52

MN//PQ, MN = PQ⇒MNPQ là hình bình hành⇒MQ=NP, MQ //NP.

 
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 21:53

Xét tứ giác MNPQ có 

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

=>MQ//NP và MQ=NP

Nguyễn Cảnh Thịnh
27 tháng 8 2022 lúc 17:59

 MN//PQ, MN = PQ⇒MNPQ là hình bình hành⇒MQ=NP, MQ //N

Nguyễn Hà Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2023 lúc 20:46

a: Xét ΔMNP và ΔPQM có

MN=PQ

NP=QM

MP chung

=>ΔMNP=ΔPQM

b: Xét tứ giác MNPQ có

MQ=NP

MN=PQ

=>MNPQ là hình bình hành

=>MN//PQ và MQ//NP

8/11 42 Phạm hoàng Bảo T...
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 9 2019 lúc 7:08

Đáp án B

nguyen hai yen
Xem chi tiết