Cho khai triển nhị thức Newton của 2 - 3 x 2 n , biết rằng n là số nguyên dương thỏa mãn C 2 n + 1 1 + C 2 n + 1 3 + C 2 n + 1 5 + . . . + C 2 n + 1 2 n + 1 = 1024 .
Hệ số của x 7 bằng
A. -2099520
B. -414720
C. 2099520
D. 414720
Tìm hệ số lớn nhất trong khai triển nhị thức Newton của \(\left(\dfrac{1}{2}+\dfrac{x}{3}\right)^{14}\)
khai triển nhị thức Newton
\(\left(x^2+\dfrac{1}{x}\right)^4\)
(x^2+1/x)^4
\(=C^0_4\cdot\left(x^2\right)^4+C^1_4\cdot\left(x^2\right)^3\cdot\left(\dfrac{1}{x}\right)+C^2_4\cdot\left(x^2\right)^2\cdot\left(\dfrac{1}{x}\right)^2+C^3_4\cdot\left(x^2\right)^1\cdot\left(\dfrac{1}{x}\right)^3+C^4_4\cdot\left(x^2\right)^0\cdot\left(\dfrac{1}{x}\right)^4\)
=x^8+4x^5+6x^3+4/x+1/x^4
khai triển các đa thức sau bằng nhị thức Newton
(x-3)^4 , (x-2y)^5 , (2x+1)^4 , (x-2)^4 , (3x-2y)^4
Trongg khai triển nhị thức Newton của \({(2 + 3x)^4}\), hệ số của \({x^2}\) là:
A. 9
B. \(C_4^2\)
C. \(9C_4^2\)
D. \(36C_4^2\)
Ta có:
\({(2 + 3x)^4} = C_4^0{2^4} + C_4^1{2^3}3x + C_4^2{2^2}{\left( {3x} \right)^2} + C_4^32.{\left( {3x} \right)^3} + C_4^4{\left( {3x} \right)^4}\)
=> Hệ số của của \({x^2}\)là \(C_4^2{.2^2}{.3^2} = 36C_4^2.\)
Chọn D.
Tìm hệ số của số hạng chứa x trong khai triển (2+3x) mũ 5 ( sử dụng công thức tổng quát Nhị Thức Newton)
SHTQ của \(\left(3x+2\right)^5\) là \(C^k_5\cdot\left(3x\right)^{5-k}\cdot2^k=C^k_5\cdot3^{5-k}\cdot2^k\cdot x^{5-k}\)
Hệ số của số hạng chứa x tương ứng với 5-k=1
=>k=4
=>Hệ số là \(C^4_5\cdot3^{5-4}\cdot2^4=240\)
Trong khai triển nhị thức Newton của\({(2x + 3)^5}\) , hệ số của \({x^4}\) hay hệ số của \({x^3}\) lớn hơn?
Ta có:
\({(2x + 3)^5} = 32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243\)
Hệ số của \({x^3}\) là 720
Hệ số của \({x^4}\) là 240.
Vậy hệ số của \({x^3}\) lớn hơn hệ số của \({x^4}\).
Tìm số hạng không chứa x trong khai triển nhị thức Newton của (1/x +x³)⁴
SHTQ là: \(C^k_4\cdot\left(x^3\right)^{4-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_4\cdot x^{12-4k}\)
Số hạng ko chứa x tương ứng với 12-4k=0
=>k=3
=>SH đó là \(C^3_4=4\)
Câu 2. (2 điểm) Cho biểu thức $Q=(x y-1)^5$.
a) Viết khai triển biểu thức $Q$ bằng nhị thức Newton.
b) Tìm số hạng có chứa $x^2 y^2$ trong khai triển trên.
Tìm hệ số lớn nhất trong khai triển nhị thức Newton của P ( x ) = 1 + 2 x 12
A. 126700.
B. 126730.
C. 126720.
D. 126710.
Đáp án C
Ta có P ( x ) = 1 + 2 x 12 = ∑ k = 0 12 C 12 k 1 12 - k = ∑ k = 0 12 C 12 k 2 k x k .
Gọi a k = C 12 K 2 K , 0 ≤ k ≤ 12 , k ∈ ℕ là hệ số lớn nhất trong khai triển.
Suy ra a k ≥ a k + 1 a k ≥ a k - 1 ⇔ c 12 k 2 k ≥ c 12 k + 1 2 k + 1 c 12 k 2 k ≥ c 12 k - 1 2 k - 1
⇔ 12 ! 12 - k ! k ! . 2 k ≥ 12 ! 11 - k ! k + 1 ! . 2 k + 1 12 ! 12 - k ! k ! . 2 k ≥ 12 ! 13 - k ! k + 1 ! . 2 k - 1 ⇔ 1 12 - k ≥ 2 k + 1 1 k ≥ 1 2 13 - k
Vậy hệ số lớn nhất trong khai triển đã cho là a 8 = 2 8 c 12 8 = 126720 .
Hệ số của số hạng chứa x 7 trong khai triển nhị thức Newton x − 1 x 2 10 là
A. C 10 2
B. C 10 7
C. - 10
D. 10
Đáp án C
Ta có khai triển nhị thức Newton