Cho c=\(\frac{1}{2}\).\(^{2^n}\)+4.\(^{2^n}\)=9.\(^{2^5}\)là n=
Câu 1 : Chứng minh : Tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
Câu 2 : Tìm n biết rằng : `\frac{3n+14}{n+2}`
Câu 3 : Cho : `A = 9 + 9^2 + 9^3 + ... + 9^99` . Tính A
Câu 4 : Tính tổng
a, `4 + 4^2 + 4^3 + ... + 4^86`
b, `\frac{1}{5} + \frac{1}{5^2} + ... + \frac{1}{5^101}`
1. Tìm a,b,c biết:
a) a/b = 8/5; b/c = 2/7 và a+b+c= 61
b) ab = 1/2; bc= 2/3; ac = 3/4
c) 3a=2b; 5b = 7c và 3a + 5c - 7b= 60
2. tìm các số nguyên n sao cho:
1) 5^n + 5^n+2 = 650
2) 32^-n .16^n = 1024
3) 3^-1 .3^n+ 5. 3^n-1 = 162
4) 125. 5\(\ge\)5^n\(\ge\)5 . 25
5) (n^54)^2 = n
6) 243\(\ge\)3^n\(\ge\)9.27
7) 2^n+3 . 2^n = 144
8)3<3^n\(\le\)234
9) 8. 16\(\ge\)2^n\(\ge\)4
10) 4^15. 9^15<2^n.3^n< 18^16. 2^16
11) 4^11. 25^11\(\le\)2^n. 5^n\(\le\)20^12. 5^12
12)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\).\(\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}\)= 2^n
13) 9. 27^n= 3^5
14) (2^3 : 4) . 2^n= 4
15) 3^-2 . 3^4. 3^n = 3^7
16)2^-1. 2^n +4.2^n=9.2^5
Câu 1: lim \(\frac{1^3+2^3+...+n^3}{n\left(n^3+1\right)}\)
Câu 2: lim (\(4+\frac{\left(-1\right)^n}{n+1}\) )
Câu 3: lim\(\sqrt{9-\frac{cos2n}{n}}\)
Câu 4: lim ( \(n^2sin\frac{n\pi}{5}-2n^3\))
Câu 5: Cho \(u_n=\frac{\left(-1\right)^n}{n^2+1}\) và \(v_n=\frac{1}{n^2+2}\). Khi đó tính lim \(\left(u_n+v_n\right)\)
Câu 4.
\(\lim \left( {{n^2}\sin \dfrac{{n\pi }}{5} - 2{n^3}} \right) = \lim {n^3}\left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - \infty \)
Vì \(\lim {n^3} = + \infty ;\lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2 \)
\(\left| {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n}} \right| \le \dfrac{1}{n};\lim \dfrac{1}{n} = 0 \Rightarrow \lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2\)
Câu 5.
Ta có: \(\left\{ \begin{array}{l} 0 \le \left| {{u_n}} \right| \le \dfrac{1}{{{n^2} + 1}} \le \dfrac{1}{n} \to 0\\ 0 \le \left| {{v_n}} \right| \le \dfrac{1}{{{n^2} + 2}} \le \dfrac{1}{n} \to 0 \end{array} \right. \to \lim {u_n} = \lim {v_n} = 0 \to \lim \left( {{u_n} + {v_n}} \right) = 0\)
Bài 2. Tìm số nguyên n , biết rằng:
a)81/(-3)^n=-243
b)25/5^n=5
c)1/2*2^n+4*2^n=9*2^5
Giải cho e nhanh với ạ
Chú ý : / là bằng phần vd: 2/4 là 2 phần bốn
^ là số mũ
* là nhân
a) \(\dfrac{81}{\left(-3\right)^n}=-243\)
\(\dfrac{\left(-3\right)^4}{\left(-3\right)^n}=\left(-3\right)^5\)
\(\left(-3\right)^n=\dfrac{\left(-3\right)^4}{\left(-3\right)^5}=\left(-3\right)^{-1}\)
n = -1
Vậy n = -1
b) \(\dfrac{25}{5^n}=5\)
\(\dfrac{5^2}{5^n}=5^1\)
\(5^n=\dfrac{5^2}{5^1}=5^1\)
n = 1
Vậy n = 1
c) \(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(2^{n-1}+4\cdot2^{n-1}\cdot2=9\cdot2^5\)
\(2^{n-1}+8\cdot2^{n-1}=9\cdot2^5\)
\(\left(8+1\right)\cdot2^{n-1}=9\cdot2^5\)
\(9\cdot2^{n-1}=9\cdot2^5\)
\(2^{n-1}=2^5\cdot\dfrac{9}{9}=2^5\)
n - 1 = 5
n = 5 + 1 = 6
Vậy n = 6
a) 81/(-3)ⁿ = -243
(-3)ⁿ = 81 : (-243)
(-3)ⁿ = -1/3
n = -1
b) 25/5ⁿ = 5
5ⁿ = 25 : 5
5ⁿ = 5
n = 1
c) 1/2 . 2ⁿ + 4 . 2ⁿ = 9 . 2⁵
2ⁿ . (1/2 + 4) = 9 . 32
2ⁿ . 9/2 = 288
2ⁿ = 288 : 9/2
2ⁿ = 64
2ⁿ = 2⁶
n = 6
1. Tìm a,b,c biết:
a) a/b = 8/5; b/c = 2/7 và a+b+c= 61
b) ab = 1/2; bc= 2/3; ac = 3/4
c) 3a=2b; 5b = 7c và 3a + 5c - 7b= 60
2. tìm các số nguyên n sao cho:
1) 5^n + 5^n+2 = 650
2) 32^-n .16^n = 1024
3) 3^-1 .3^n+ 5. 3^n-1 = 162
4) 125. 5\(\ge\)5^n\(\ge\)5 . 25
5) (n^54)^2 = n
6) 243\(\ge\)3^n\(\ge\)9.27
7) 2^n+3 . 2^n = 144
8)3<3^n\(\le\)234
9) 8. 16\(\ge\)2^n\(\ge\)4
10) 4^15. 9^15<2^n.3^n< 18^16. 2^16
11) 4^11. 25^11\(\le\)2^n. 5^n\(\le\)20^12. 5^12
12)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\).\(\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}\)= 2^n
13) 9. 27^n= 3^5
14) (2^3 : 4) . 2^n= 4
15) 3^-2 . 3^4. 3^n = 3^7
16)2^-1. 2^n +4.2^n=9.2^5
Bài 2:
1: \(5^n+5^{n+2}=650\)
\(\Leftrightarrow5^n\cdot26=650\)
\(\Leftrightarrow5^n=25\)
hay x=2
2: \(32^{-n}\cdot16^n=1024\)
\(\Leftrightarrow\dfrac{1}{32^n}\cdot16^n=1024\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n=1024\)
hay n=-10
13: \(9\cdot27^n=3^5\)
\(\Leftrightarrow3^{3n}=3^5:3^2=3^3\)
=>3n=3
hay n=1
Tính các giới hạn sau:
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 5{n^2} - 2}}\);
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}}\);
d) \(\lim \left( {4 - \frac{{{2^{n + 1}}}}{{{3^n}}}} \right)\)
e) \(\lim \frac{{{{4.5}^n} + {2^{n + 2}}}}{{{{6.5}^n}}}\)
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^n}}}\).
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).
d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).
e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).
So sánh các phân số sau :
a) \(\frac{n}{n+5}và\frac{n+9}{n+14}\)
b) \(\frac{n+1}{n+2}và\frac{n+3}{n+4}\)
c) \(\frac{n+9}{n}va\frac{n+11}{2}\)
d) \(\frac{n+12}{n+4}va\frac{n}{n-4}\)
AI NHANH NHẤT MÌNH TÍCH CHO!!!!!!!!!!
Câu 1 a. CHỨNG MINH RẰNG : \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}<\frac{1}{4}\)
b.TÌM SỐ NGUYÊN A ĐỂ : \(\frac{2A+9}{A+3}+\frac{5A+17}{A+3}-\frac{3A}{A+3}\)LÀ SỐ NGUYÊN.
Câu 2 TÌM N LÀ SỐ TỰ NHIÊN ĐỂ : A=(N+5)(N+6)CHIA HẾT CHO 6N
Câu 3 TÌM ĐA THỨC BẬC HAI SAO CHO: f(x)-f(x)=x.ÁP DỤNG TÍNH TỔNG : S=1+2+3+4+...+n.
đúng là ko có bài nào dễ trong ngày hôm nay
Bạn ghi nhỏ lại nhé. Hơn nũa bạn nên tách riêng từng câu hỏi, làm vầy nhiều lắm
a) Ta co :1/5^2+1/6^2+1/7^2+...+1/100^2<1/4.5+1/5.6+1/6.7+...+1/99.100
Dat A=1/4.5+1/5.6+...+1/99.100. B=1/5^2+1/6^2+...+1/100^2
A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/99-1/100
=1/4-1/100=6/25
Ma1/6<6/25<1/4.Ta lại cóA<6/25 Vậy:1/6<1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
Tính:
Câu 1: lim ( \(\frac{1}{\sqrt{n^2+1}}\) + \(\frac{1}{\sqrt{n^2+2}}\) + ... + \(\frac{1}{\sqrt{n^2+n}}\) )
Câu 2: lim ( \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +...+ \(\frac{1}{n\left(n+1\right)}\) )
Câu 3: lim ( \(\frac{1}{n^2}\) + \(\frac{3}{n^2}\) + \(\frac{5}{n^2}\) +...+ \(\frac{2n-1}{n^2}\) )
Câu 4: lim ( \(\sqrt{3+\frac{n^2-1}{3+n^2}}\) - \(\frac{\left(-1\right)^n}{2^n}\) )
Câu 5: lim \(\sqrt{\frac{cos2n}{3n}+9}\)
$n$ tiến đến đâu vậy bạn?
Câu 2:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{(n+1)-n}{n(n+1)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
\(\Rightarrow \lim_{n\to \infty}(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)})=\lim_{n\to \infty}(1-\frac{1}{n+1})=1-\lim_{n\to \infty}\frac{1}{n+1}=1-0=1\)
Câu 3:
Ta biết rằng $\lim_{x\to \infty}\frac{1}{x}=0\Rightarrow \lim_{x\to \infty}\frac{a}{x}=0$ với $a\in\mathbb{R}$
Do đó:
$\lim_{n\to \infty}\frac{1}{n^2}=0$
$\lim_{n\to \infty}\frac{2}{n^2}=0$
.....
$\lim_{n\to \infty}\frac{2n-1}{n^2}=\lim_{n\to \infty}(\frac{2}{n}-\frac{1}{n^2})=\lim_{n\to \infty}\frac{2}{n}-\lim_{n\to \infty}\frac{1}{n^2}=0-0=0$
Do đó:
$\lim_{n\to \infty}(\frac{1}{n^2}+...+\frac{2n-1}{n^2})=\lim_{n\to \infty}\frac{1}{n^2}+....+\lim_{n\to \infty}\frac{2n-1}{n^2}=0+0+...+0=0$