Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
erosennin
Xem chi tiết
vvvvvvvv
Xem chi tiết
Nguyễn Ngọc
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 12 2020 lúc 23:55

Hàm số xác định trên R khi và chỉ khi:

a.

\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)

b.

\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm

\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)

\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)

c.

\(x^2+6x+2m-3>0\) với mọi x

\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)

\(\Leftrightarrow m>6\)

e.

\(-x^2+6x+2m-3>0\) với mọi x

Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn

f.

\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)

\(\Leftrightarrow1< m< 3\)

erosennin
Xem chi tiết
MiMi VN
Xem chi tiết
Phạm Minh Quang
10 tháng 12 2020 lúc 15:33

a) Hàm số đồng biến nếu \(\dfrac{k^2+2}{k-3}>0\) \(\Leftrightarrow k>3\)

b) Hàm số nghịch biến nếu \(\dfrac{k+\sqrt{2}}{k^2+\sqrt{3}}< 0\Leftrightarrow k< -\sqrt{2}\)

Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 22:51

1. \(y'=3x^2\sqrt{x}+\dfrac{x^3-5}{2\sqrt{x}}=\dfrac{7x^3-5}{2\sqrt{x}}\)

2. \(y'=3x^5+\dfrac{3}{x^2}+\dfrac{1}{\sqrt{x}}\)

3. \(y'=2-\dfrac{2}{\left(x-2\right)^2}\)

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 19:19

a: \(y=-\dfrac{1}{3}x^3-mx^2+4x+2021m\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-m\cdot2x+4\)

=>\(y'=-x^2-2m\cdot x+4\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-2m\right)^2-4\cdot\left(-1\right)\cdot4< =0\\-1< 0\end{matrix}\right.\)

=>\(4m^2+16< =0\)

mà \(4m^2+16>=16>0\forall m\)

nên \(m\in\varnothing\)

b: \(y=-\dfrac{1}{3}\cdot x^3-\dfrac{1}{2}\cdot m\cdot x^2+x+20\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-\dfrac{1}{2}\cdot m\cdot2x+1\)

=>\(y'=-x^2-m\cdot x+1\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-4\cdot\left(-1\right)\cdot1< =0\\-1< 0\end{matrix}\right.\)

=>\(m^2+4< =0\)

mà \(m^2+4>=4>0\forall m\)

nên \(m\in\varnothing\)

vvvvvvvv
Xem chi tiết
Dương Thiên Thanh
Xem chi tiết
ý phan
Xem chi tiết
MiRi
13 tháng 3 2022 lúc 8:51

 

a) \(A=2x^2-\dfrac{1}{3}y\)

A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)

A=\(\dfrac{5}{3}\)\(x^2y\)

Tại \(x=2;y=9\) ta có

A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60

Vậy tại \(x=2;y=9\) biểu thức A= 60

b) P=\(2x^2+3xy+y^2\)            (\(y^2\) là 1\(y^2\) nha bạn)

P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)

P= 6\(x^3y^3\)

Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có

P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)

Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)

c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)

=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)

=\(-\dfrac{1}{3}\)\(x^4y^2\)

Tại \(x=2;y=\dfrac{1}{4}\)ta có

\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)

\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)\(-\dfrac{1}{3}\)

CHÚC BẠN HỌC TỐT NHA