Cho cấp số nhân ( u n ) có số hạng đầu u 1 = 6 và công bội q = 2. Số hạng thứ tư của cấp số nhân đó bằng
A. 24
B. 96
C. 12
D. 48
Cho cấp số nhân u n có tổng n số hạng đầu tiên là S n = 5 n − 1 , n = 1 , 2 , 3 ... Tìm số hạng đầu u 1 và công bội q của cấp số nhân đó.
A. u 1 = 5 , q = 6
B. u 1 = 4 , q = 5
C. u 1 = 5 , q = 4
D. u 1 = 6 , q = 5
Cho cấp số nhân u n có tổng n số hạng đầu tiên là S n = 6 n - 1 . Tìm số hạng thứ năm của cấp số nhân đã cho
A. 120005
B. 6840
C. 7775
D. 6480
Chọn D
Cấp số nhân u n có số hạng đầu u 1 và công bội q
Do S n = 6 n - 1 nên q ≠ 1
Khi đó S n = u 1 ( 1 - q n ) 1 - q = 6 n - 1
Ta có : S 1 = u 1 ( 1 - q ) 1 - q ⇔ u 1 = 5
S 2 = u 1 1 - q 2 1 - q ⇔ q = 6
Vậy u 5 = u 1 . q 4 = 6480
Cho cấp số nhân u n có tổng n số hạng đầu tiên là S n = 6 n - 1 . Tìm số hạng thứ năm của cấp số nhân đã cho.
A. 120005
B. 6840
C. 7775
D. 6480
Cho một cấp số nhân có n số hạng. Số hạng đầu tiên là 1, công bội là q và tổng là S. Trong đó q và S đều khác 0. Tổng các số hạng của cấp số nhân mới được thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu bằng nghịch đảo của nó là:
A. 1 S .
B. 1 q n . S .
C. S q n − 1 .
D. q n S .
Đáp án C
Em có: S = 1. q n − 1 q − 1 = q n − 1 q − 1 .
Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là 1 q .
Gọi S' là tổng mới của cấp số nhân mới.
Em có: S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .
Vậy tổng của cấp số nhân mới là: S q n − 1 .
Cho cấp số nhân ( u n ) có tổng n số hạng đầu tiên là S n = 6 n - 1 . Tìm số hạng thứ năm của cấp số cộng đã cho
A. 6480
B. 6840
C. 7775
D. 12005
Chọn đáp án A
Phương pháp
u 5 = S 5 - S 4
Cách giải
Ta có:
Cho cấp số nhân ( u n ) có tổng n số hạng đầu tiên là S n = 6 n - 1 . Tìm số hạng thứ năm của cấp số cộng đã cho
A. 6480
B. 6840
C. 7775
D. 12005
Cho cấp số nhân u n có số hạng đầu u 1 = 3 và số hạng thứ tư u 4 = 24 . Tổng S 10 của 10 số hạng đầu của cấp số nhân trên là
A. 1533
B. 6141
C. 3069
D. 120
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
cho cấp số nhân (Un) có tổng n số hạng đầu tiên là Sn = 4n-2n tìm công bội q của cấp số nhân đó
\(S_1=u_1=4-2=2\)
\(S_2=u_1+u_2=4^2-2.2=12\Rightarrow u_2=12-2=10\)
\(\Rightarrow q=\dfrac{u_2}{u_1}=\dfrac{10}{2}=5\)