Cho x = t 1 t - 1 , y = t 6 t - 1 t > 0 , t ≠ 1
Giữa x và y có hệ thức nào sau đây?
A. y x = x y
B. x x = y y
C. y x = x 1 y
D. x y = y 1 x
Cho x+y+z-t=1 và \(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}\) .Tìm x,y,z,t
\(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}\)\(=\frac{x-1+2y-1+z+2-y-t-3}{3+4+5-6}\)
\(=\frac{x+y+z-t-3}{6}=\frac{1-3}{6}=-\frac{1}{3}\)
=> \(x-1=-1;2y-1=-\frac{4}{3};z+2=-\frac{5}{3};y+t+3=-2\)
=> \(x=0;y=-\frac{1}{6};z=-\frac{11}{3};t=-\frac{29}{6}\)
Ta có x + y + z - t = 1
=> x + y + z = 1 + t
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}=\frac{x-1+2y-1+z+2-y-t-3}{3+4+5-6}=\frac{-2}{6}=\frac{-1}{3}\)
=> x = 0 ; y = -1/6 ; z = -11/3 ; t = - 5/6
Cho x +y +z=6 và (x-1)^3+ (y-2)^3 +(z-3)^3=0 tính T=(x-1)^2n+1+(y-1)^2n+1+(z-1)^2n+1
Cho t/x=4/3;y/z=3/2;z/x=1/6.Tìm t/y
a)CMR với mọi x,y thuộc Z thì
S=(x+y)(x+2y)(x+3y)(x+4y)y^4 là số chính phương
b) Cho T=(t-1)(t-3)(t-4)(t-6)+9
1)CM: T lớn hơn hoặc bằng 0 với mọi t
2)T là số chính phương với mọi t thuộc Z
a. Cho x + y = 1 và x.y = -1. Tính x3 + y3
b. Cho x - y = 1 và x.y = 6. Tính x3 - y3
cho biết t/x = 4/3 ;y/z = 3/2; z/x = 1/6, hãy tìm tỉ số t/y
Bài 1: Cho x+y = -5 và xy = 6.Tính x^3+y^3
Bài 2: Cho x-y = 5 và xy =6 . Tính (x+y)^2
và x^4+y^4
Bài 3: Cho x-y = 1 và xy = -12 . Tính x^3-y^3
(Giúp mình nha<3 )
\(x^2+xy+y^2=\left(x+y\right)^2-3xy=5^2-18=7\Rightarrow x^3+y^3=\left(-5\right).7=-35\)
\(\left(x-y\right)^2+2xy=x^2+y^2=25+12=37;xy=6\Rightarrow2x^2y^2=72;x^4+y^4=\left(x^2+y^2\right)-2x^2y^2=37^2-72\)
\(x-y=1\Rightarrow\left(x-y\right)^2+2xy=-23\Rightarrow vlnhabn\)
Cho x+y+z+t=1971 và 1/x+y+z+1/t+y+z+1/x+y+t+1/x+t+z=1/9
Bài 1: Cho \(A=\frac{1}{x-2}+\frac{x^2-x-2}{x^2-7x+10}-\frac{2x-4}{x-5}\)
a, Rút gọn A b,Tìm x nguyên để A nguyên
Bài 2: Cho \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)
a, Tìm điều kiện xác định của M b, Rút gọn M c, Tính giá trị của M khi \(\left|x\right|=\frac{1}{2}\)
Bài 3: Cho biểu thức \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}\cdot\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
a, Rút gọn N b,Tính giá trị của N khi \(y=\frac{1}{2}\) c,Tìm giá trị của y để N luôn có giá trị dương
qqwweerrttyyuuiioopp
âsđffgghhjjkkll
zzxxccvvbbnnmm
cho x+y+z-1 và \(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}\)tìm x,y,z,t