Số các giá trị nguyên của n để \(\frac{6n+5}{2n-1}\)là số nguyên.
tìm các số nguyên N để các phân số sau có giá trị là số nguyên và tính giá trị đó :
A = \(\frac{3n-9}{n-4}\)
B = \(\frac{6n+5}{2n-1}\)
\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)
Để p/s A có giá trị nguyên thì 3 chia hết cho n+4
=>n+4 E Ư(3)={-3;-1;1;3}
=>n E {-7;-5;-3;-1}
Vậy........
\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để B là số nguyên thì 8 chia hết cho 2n-1
Tới đây tương tự câu trên nhé
Để A nguyên thì 3n - 9 chia hết n - 4
<=> (3n - 12) + 3 chia hết n - 4
=> 3.(n - 4) + 3 chia hết n - 4
=> 3 chia hết n - 4
=> n - 4 thuộc Ư(3)
=> Ư(3) = {-1;1;-3;3}
Ta có:
n - 4 | -1 | 1 | -3 | 3 |
n | 3 | 5 | 1 | 7 |
câu đầu là 3 chia hết cho n-4=>n-4 E Ư(3) nhé
tìm các số nguyên N để các phân số sau có giá trị là số nguyên và tính giá trị đó :
A = \(\frac{3n+9}{n-4}\)
B = \(\frac{6n+5}{2n-1}\)
a, Ta có: \(\frac{3n+9}{n-4}\in Z\Leftrightarrow\frac{3n-12+21}{n-4}\in Z\Leftrightarrow\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}\in Z\Leftrightarrow3+\frac{21}{n-4}\in Z\)
\(\Leftrightarrow\frac{21}{n-4}\in Z\Leftrightarrow n-4\inƯ21\Leftrightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21;\right\}\)
\(\Leftrightarrow n\in\left\{-17;-3;1;3;4;7;11;25\right\}\)
b, Ta có: \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow\frac{6n-3+8}{2n-1}\in Z\Leftrightarrow\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}\in Z\Leftrightarrow3+\frac{8}{2n-1}\in Z\Leftrightarrow\frac{8}{2n-1}\in Z\)
\(\Leftrightarrow2n-1\inƯ8\Leftrightarrow2n-1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow n\in\left\{1;0\right\}\) Vì \(n\in Z\)
Đặt tính ra ta có: \(\left(3n+9\right):\left(n-4\right)=3\) dư 21
\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{21}{n-4}\)
\(\Rightarrow n-4\in U\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Ta có bảng sau:
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
Vậy......
b) Ta tính được: \(\left(6n+5\right):\left(2n-1\right)=3\) dư 8
\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\in U\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
2n-1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 1.5 (loại) | -0.5 (loại) | 2.5 (loại) | -1.5 (loại) | 4.5 (loại) | -3.5 (loại) |
Vậy \(x\in\left\{0;1\right\}\)
Tìm số nguyên n để các phân số sau có giá trị là số nguyên lớn nhất.
B=\(\dfrac{6n+5}{2n-1}\)
Để B đạt GTLN thì \(\dfrac{8}{2n-1}\)đạt GTLN
⇒2n-1 là số nguyên dương nhỏ nhất
⇒2n-1=1
⇒2n=2
⇒n=1
Số giá trị nguyên của n để biểu thức B=6n+5/2n-1 có giá trị 1 số nguyên là .................
De \(\frac{6n+5}{2n-1}\)\(\in Z\)
=> 6n+5 chia het cho 2n-1
=> 6n-3+8 chia het cho 2n-1
=> 3(2n-1)+8 chia het cho 2n-1
=> 8 chia het cho 2n-1
=> 2n-1=-1;1;-2;2;-4;4;-8;8
Vi 2n-1 la so le
=> 2n-1=-1;1
=> 2n=0;2
=> n=0;1
Tìm số nguyên n để các số hữu tỉ \(\frac{6n+5}{2n+1}\)có giá trị nguyên.
\(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=3+\frac{2}{2n+1}\)
Số hữu tỉ \(\frac{6n+5}{2n+1}\) nguyên \(\Leftrightarrow\) \(\frac{2}{2n+1}\) nguyên
\(\Leftrightarrow2n+1\inƯ\left(2\right)\)
\(\Leftrightarrow2n+1\in\left\{-2;-1;1;2\right\}\)
\(\Leftrightarrow2n\in\left\{-3;-2;0;1\right\}\)
\(\Leftrightarrow n\in\left\{-1;0\right\}\)
6n+52n+1 =6n+3+22n+1 =3+22n+1
Số hữu tỉ 6n+52n+1 nguyên ⇔ 22n+1 nguyên
⇔2n+1∈Ư(2)
⇔2n+1∈{−2;−1;1;2}
⇔2n∈{−3;−2;0;1}
⇔n∈{−1;0}
Trả lời :.....................
x = 1 ; -1
Hk Tốt
tìm số giá trị nguyên của n để biểu thức B = 6n+ 5/ 2n-1có giá trị là 1 só nguyên
Tìm các số nguyên n để phân số sau có giá trị là một số nguyên và tính các giá trị đó.
a) B=3n/1n+1 b) 6n+5/2n−1
lưu ý : / phần nha
a)B=3(n+1)/n+1 - 3/n+1
=3 - 3/n+1
để B nguyên thì n+1 thuộc ước của 3 (1;3)
suy ra n =(0;2)
câu b tương tự
a) \(B=\dfrac{3n}{n+1}=\dfrac{3\left(n+1\right)}{n+1}-\dfrac{3}{n+1}=3-\dfrac{3}{n+1}\in Z\)
\(\Rightarrow\dfrac{3}{n+1}\in Z\Rightarrow n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\Rightarrow n\in\left\{0;-2;2;-4\right\}\)
b) \(\dfrac{6n+5}{2n-1}=\dfrac{3\left(2n-1\right)}{2n-1}+\dfrac{8}{2n-1}=3+\dfrac{8}{2n-1}\in Z\)
\(\Rightarrow\dfrac{8}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Vì \(n\in Z\Rightarrow n\in\left\{1;0\right\}\)
Số giá trị nguyên của n để biểu thức B =6n + 5/2n -1 có giá trị là 1 số nguyên.
GIẢI GIÚP TỚ VỚI CÁC BẠN, CẦN GẤP
tìm các số nguyên n để số hữu tỉ có giá trị là số nguyên: a)n-21/n+10 b)3n+9/n-4 c)6n+5/2n-1
a: Để A là số nguyên thì n-21 chia hết cho n+10
=>n+10-31 chia hết cho n+10
=>n+10 thuộc {1;-1;31;-31}
=>n thuộc {-9;-11;21;-41}
b: Để B là số nguyên thì 3n+9 chia hết cho n-4
=>3n-12+21 chia hết cho n-4
=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}
=>n thuộc {5;3;7;1;11;-3;25;-17}
c: C nguyên
=>6n+5 chia hết cho 2n-1
=>6n-3+8 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n nguyên
nên 2n-1 thuộc {1;-1}
=>n thuộc {1;0}