a)B=3(n+1)/n+1 - 3/n+1
=3 - 3/n+1
để B nguyên thì n+1 thuộc ước của 3 (1;3)
suy ra n =(0;2)
câu b tương tự
a) \(B=\dfrac{3n}{n+1}=\dfrac{3\left(n+1\right)}{n+1}-\dfrac{3}{n+1}=3-\dfrac{3}{n+1}\in Z\)
\(\Rightarrow\dfrac{3}{n+1}\in Z\Rightarrow n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\Rightarrow n\in\left\{0;-2;2;-4\right\}\)
b) \(\dfrac{6n+5}{2n-1}=\dfrac{3\left(2n-1\right)}{2n-1}+\dfrac{8}{2n-1}=3+\dfrac{8}{2n-1}\in Z\)
\(\Rightarrow\dfrac{8}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Vì \(n\in Z\Rightarrow n\in\left\{1;0\right\}\)
a: Để B nguyên thì \(3n⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-2;2;-4\right\}\)