Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Fairy Tail
Xem chi tiết
Nguyễn Minh Toàn
Xem chi tiết
Thanh Tùng DZ
11 tháng 6 2019 lúc 22:10

a + b + c= 1 \(\Rightarrow\)1 - a = b + c > 0

Tương tự : 1 - b > 0 ; 1 - c > 0

Mà 1 + a = 1 + ( 1 - b - c ) = ( 1- b ) + ( 1 - c ) \(\ge\)\(2\sqrt{\left(1-b\right)\left(1-c\right)}\)

Tương tự : \(1+b\ge2\sqrt{\left(1-a\right)\left(1-c\right)}\)\(1+c\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\sqrt{\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2}=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\Rightarrow A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\ge8\)

Dấu " = : xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy GTNN của A là 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)

tth_new
12 tháng 6 2019 lúc 8:49

Cách khác:

\(A=\frac{\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(b+c\right)+\left(b+a\right)\right]\left[\left(c+a\right)+\left(c+b\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Áp dụng BĐT Cô si cho 2 số ta được:

\(A\ge\frac{8\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\)

"=" <=> a = b = c = 1/3

Kết luận..

hong doan
Xem chi tiết
oOo Sát thủ bóng đêm oOo
27 tháng 7 2018 lúc 14:26

tích mình đi

làm ơn

rùi mình

tích lại

thanks

Tuan
27 tháng 7 2018 lúc 14:26

k mk đi 

Phạm Tuấn Đạt
27 tháng 7 2018 lúc 14:35

Áp dụng BĐT bunhiacopxki ta có :\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

.Dấu "=" xảy ra khi   :\(\frac{a}{\frac{1}{a}}=\frac{b}{\frac{1}{b}}=\frac{c}{\frac{1}{c}}\Leftrightarrow a^2=b^2=c^2\Leftrightarrow a=b=c\)

Mà \(a+b+c\le\frac{3}{2}\)\(\Rightarrow M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9:\frac{3}{2}=9.\frac{2}{3}=6\)

Vậy Min M = 6 <=> a = b = c

hoàng minh chính
Xem chi tiết
hotboy2002
Xem chi tiết
nguyen van bi
7 tháng 12 2020 lúc 19:22

bạn kiểm tra lại xem có sai đề không

Khách vãng lai đã xóa
hotboy2002
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2022 lúc 15:42

Ủa số thực âm hay không âm vậy em?

Nguyễn Việt Lâm
16 tháng 3 2022 lúc 16:05

Đặt \(a+b+c=p\) ; \(ab+bc+ca=q\) ; \(abc=r\)

\(\Rightarrow p^2\ge3q\)

Từ giả thiết: \(4q=9r+1\)

Áp dụng BĐT Schur bậc 3:  \(r\ge\dfrac{4pq-p^3}{9}\)

\(\Rightarrow4q\ge4pq-p^3+1\Leftrightarrow p^3-1+4q-4pq\ge0\)

\(\Leftrightarrow\left(p-1\right)\left(p^2+p+1-4q\right)\ge0\)

Nếu \(p< 1\Rightarrow p^2+p+1-4q\le0\)

Mà \(p< 1\Rightarrow1>p^2\Rightarrow0\ge p^2+p+1-4q>p^2+p+p^2-4q\)

\(\Rightarrow2\left(p^2-2q\right)+p< 0\) (vô lý do \(p^2\ge3q\ge2q\))

\(\Rightarrow p\ge1\)

Vậy \(P_{min}=1\) khi \(a=b=c=\dfrac{1}{3}\) hoặc \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\) và các hoán vị

NGUYỄN TẤT THẮNG
Xem chi tiết
NGUYỄN TẤT THẮNG
28 tháng 10 2021 lúc 15:58

ab>=6 và b>= 3 nha

P=a+b+2016

Khách vãng lai đã xóa
NGUYỄN TẤT THẮNG
28 tháng 10 2021 lúc 16:02

các bạn giúp mk ik 

cám ơn rất nhiều

Khách vãng lai đã xóa
Marie Curie
Xem chi tiết