Tính:
(1-1/2x1/2)x(1-1/3x1/3)x(1-1/4x1/4)x…x(1-1/2007x1/2007)
Tính:(1-1/2x1/2)x(1-1/3x1/3)x(1-1/4x1/4)x…x(1-1/2007x1/2007)
(1-1/2x1/2)x(1-1/3x1/3)x(1-1/4x1/4)x…x(1-1/2007x1/2007) = ( 1 - 1/4 ) x ( 1 - 1/9 ) x ( 1- 1/16) x .....x ( 1 - 1/4028049) = 3/4 x 8/9 x 15/16 x .....x 4028048 / 4028049 = 3 x 8 x 15 x .....x 4028048 / 4 x 9 x 16 x ......x 4028049 = 1 x 3 x 2 x 4 x 3 x 5 x .....x 2006 x 2008 / 2x2 x 3 x3 x 4 x 4 x .....x 2007 x 2007 = ( 1 x 2 x 3 x .....x 2006) x ( 3 x 4 x 5 x .....x 2008) / ( 2 x 3 x 4 x ....x 2007) x ( 2 x 3 x 4 x ....x 2007) = 2008 / 2007 x 2 = 1004 / 2007
a)[1-1/2]x[1-1/3]x[1-1/4]x..........[1-1/18]x[1-1/19]x[1-1/20]
b)1/1/2x1/1/3x1/1/4x1/1/5........x1/1/2005x1/1/2006x1/1/2007
a,
=1/2x2/3x3/4x...x17/18x18/19x19/20
=1/20
b,
(1/1x1/2) + (1/2x1/3) + (1/3x1/4) + (1/4x1/5) +....+ (1/72x1/73) =
`@Fù`
`=1/(1×2)+1/(2×3)+1/(3×4)+...+1/(72×73)`
`=1/1-1/2+1/2-1/3+...+1/72-1/73`
`=1-1/73`
`=72/73`
1/1x1/2+1/2x1/3+1/3x1/4+1/4x1/5+1/5x1/6
= 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5 x 6
= (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + (1/4 - 1/5) + (1/5 - 1/6)
= 1 - 1/6
= 5/6
nha,mơn nhìu
\(\frac{1}{1}x\frac{1}{2}+\frac{1}{2}x\frac{1}{3}+\frac{1}{3}x\frac{1}{4}+\frac{1}{4}x\frac{1}{5}+\frac{1}{5}x\frac{1}{6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
1/2x1/3+1/3x1/4+1/4x1/5+1/5x1/6+1/6x1/7+1/7x1/8+1/8x1/9
1/2x1/3+1/3x1/4+1/4x1/5+1/5x1/6+1/6x1/7+1/7x1/8+1/8x1/9
=7/18
b1:tính:1/2x1/3+1/3x1/4+...+1/8x1/9
b2: tìm x
1+1/3+1/10+...+1/x(x+1):2
Cho x2−2(m−1)x+(m+1)2=0x2−2(m−1)x+(m+1)2=0 có 2 nghiệm x1, x2 t/m x1+x2≤4x1+x2≤4. Tìm MAX, MIN của P=x31+x32+x1.x2(3x1+3x2)+8x1.x2
Cho phương trình:
a,mx2+2(m-4)x+m+7=0
Tìm m để x1-2x2=0
b, x2+(m-1)x+5m-6=0
Tìm m để 4x1+3x2=1
c,3x2-(3m-2)x-(3m+1)=0
TÌm m để 3x1-5x2=6
a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)
(*) \(m\ne0\) Phương trình có nghiệm
\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)
Hệ thức Viet kết hợp 4x1 + 3x2 = 1
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)
\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)
\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)
\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1
c4
cho pt ẩn x: \(x^2-2x-m^2-4=0\)(1)
a/ giải pt đã cho khi m=\(\dfrac{1}{2}\)
b/ chứng minh pt luôn có 2 nghiệm phân biệt vs mọi m
c/ tính giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho 2x1,x2(2-3x1)=2
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt