Cho tam giác ABC vuông tại A có sinC bằng
A.sinB B.cos B C. tanB D. cotB
: Tam giác ABC vuông tại A. Khẳng định nào sau đây đúng?
A. sinB = sinC B. cosB = cosC C. tanB = cotC D. cotB = cotC
cho △ ABC vuông tại A ,CMR: , TanB=cotC,cotB=Tanc
CoSB=sinC , TanB=cotC,cotB=Tanc
cho △ ABC vuông tại A ,CMR:CoSB=sinC , TanB=cotC,cotB=Tanc
CosB = AB / BC
SinC = AB / BC
=> CosB = SinC
Tương tự em làm các bài sau nhé !
Tam giác abc vuông tại a, có ac=1/2cb. Tính sinb, cosb, tanb, cotb.
cho tam giác abc vuông tại a ab=9cm bc=15cm.Tính sinc và tanB
\(SinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)
Áp dụng Pi-ta-go cho tam giác ABC ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow9^2+AC^2=15^2\\ \Rightarrow AC=12\)
\(TanB=\dfrac{AC}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\)
Cho tam giác ABC vuông tại A đường cao AH tính sinB cosB tanB cotB biết AB=30.AH=24
Bài làm:
Ta có: \(AB.AC=BC.AH\) => \(\frac{AH}{AB}=\frac{AC}{BC}=\frac{24}{30}=\frac{4}{5}\)
=> \(\sin B=\frac{4}{5}\)
Lại có: \(AB^2=BC^2-CA^2\)
<=> \(900=\frac{25}{16}AC^2-AC^2\)
<=> \(900=\frac{9}{16}AC^2\)
<=> \(AC^2=1600\) => \(AC=40\)
=> \(BC=50\)
Từ đó ta có thể dễ dàng tính được:
\(\cos B=\frac{AB}{BC}=\frac{3}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{4}{3}\) ; \(\cot B=\frac{AB}{AC}=\frac{3}{4}\)
cho tam giác ABC vuông tại A,AB=6cm,AC=8cm.Kẻ đường cao AH,tia phân giác AD
a)Tính BC,HA,HB,HC
b)tính sinB, cosB,tanB,cotB
c)tínhBD,CD
d)tính sin góc ADH, cos góc ADH,tan góc ADH,cot góc ADH
tập hợp mẹ Lê Nguyên Hạo
90;89;87;.......
ê Nguyễn Tất Thịnh ông đăng lung tung j đấy
Cho tam giác ABC vuông tại A,AB=21cm,AC=28cm.Kẻ đường cao AH,tia phân giác AD
a)Tính BC,HA,HB,HC
b)tính sinB, cosB,tanB,cotB
c)tínhBD,CD
d)tính sin góc ADH, cos góc ADH,tan góc ADH,cot góc ADH
Pytago ra BC=35
Áp dụng hệ thức lượng ra:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{441}+\frac{1}{784}\Rightarrow AH=\frac{84}{5}\)
AB2=HB.BC→HB=441:35=12.6
HC=BC-HB=35-12.6=22.4
b, Tính theo ct thôi vì biết các cạnh rồi.
c,Theo t/c đường phân giác có
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{BD}{CD}=\frac{3}{4}\Rightarrow\frac{BD+CD}{CD}=\frac{3+4}{4}\Rightarrow\frac{BC}{CD}=\frac{7}{4}\Rightarrow CD=20;BD=15\)
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC