Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nkjuiopmli Sv5
Xem chi tiết
Lê Thị Thục Hiền
30 tháng 6 2021 lúc 21:29

Pt \(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{4}=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\),\(k\in Z\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{19\pi}{24}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...
Hôm qua họ bảo toi ra lấy CCCD nma toi chưa đi, nay toi đi họ lại đang họp, liệu mai toi đi có bị ăn chửi ko, mn cho ý kiến đi :<

Hồng Phúc
30 tháng 6 2021 lúc 21:29

\(2sin\left(2x-\dfrac{\pi}{4}\right)+\sqrt{3}=0\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=sin\left(-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{4}=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{12}+k2\pi\\2x=\dfrac{19\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{19\pi}{24}+k\pi\end{matrix}\right.\)

Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2023 lúc 10:53

loading...  loading...  

Nhi Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 18:25

loading...  

abc
Xem chi tiết
Hồng Phúc
15 tháng 8 2021 lúc 21:17

ĐK: \(x\ne\dfrac{\pi}{4}+k\pi;x\ne\dfrac{k\pi}{2}\)

\(\dfrac{2sin^2x+cos4x-cos2x}{\left(sinx-cosx\right)sin2x}=0\)

\(\Leftrightarrow2sin^2x+cos4x-cos2x=0\)

\(\Leftrightarrow2sin^2x-1+cos4x-cos2x+1=0\)

\(\Leftrightarrow2cos^22x-2cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được \(x=-\dfrac{\pi}{4}+k\pi\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 12 2018 lúc 8:56

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Sách Giáo Khoa
Xem chi tiết
Minh Hải
9 tháng 4 2017 lúc 20:46

a) Đặt t = cosx, t ∈ [-1 ; 1] ta được phương trình 2t2 - 3t + 1 = 0 ⇔ t ∈ {1 ; }.

Nghiệm của phương trình đã cho là các nghiệm của hai phương trình sau:

cosx = 1 ⇔ x = k2π và cosx = ⇔ x = + k2π.

Đáp số : x = k2π ; x = + k2π, k ∈ Z.

b) Ta có sin4x = 2sin2xcos2x (công thức nhân đôi), do đó phương trình đã cho tương đương với

2sin2x(1 + √2cos2x) = 0 ⇔


Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 10 2017 lúc 8:46

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nkjuiopmli Sv5
Xem chi tiết
Trần Ái Linh
17 tháng 7 2021 lúc 22:14

`2sin^2x+\sqrt3sin2x=3`

`<=>2. (1-cos2x)/2 + \sqrt3sin2x=3`

`<=>\sqrt3sin2x-cos2x=2`

`<=> \sqrt3/2 sin2x-1/2 cos2x=1`

`<=>sin (2x-π/6) = 1`

`<=> 2x-π/6=π/2+k2π`

`<=> x=π/3+kπ (k \in ZZ)`.

Nguyễn Việt Lâm
17 tháng 7 2021 lúc 22:12

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x=3\)

\(\Leftrightarrow\sqrt{3}sin2x-cos2x=2\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

Hoàng Anh
Xem chi tiết
Nguyễn Đức Trí
21 tháng 9 2023 lúc 5:19

b) \(2sin^2x-3sinxcosx+cos^2x=0\)

\(\Leftrightarrow2tan^2x-3tanx+1=0\left(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=tan\dfrac{\pi}{4}\\tanx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{2}\right)+k\pi\end{matrix}\right.\left(k\in Z\right)\)