Ghi ra tất cả cách sắp xếp 3 bạn A, B, C vào ngồi chung ở một bàn, theo mẫu
Giá để đồ chơi của bạn Anh Quân có ba ngăn. bạn Anh Quân xếp tất cả mẫu ô tô vào một ngăn, tất cả mẫu máy bay vào một ngăn khác. Ngăn thứ ba bạn để những đồ chơi còn lại. Sơ đồ Hình 3 mô tả cách sắp xếp giá đồ chơi của bạn Anh quân.
Sơ đồ sắp xếp giá đồ chơi của bạn Anh Quân là một thể hiện sắp xếp phân loại.
Giá sách của em có mấy ngăn? Em hãy vẽ sơ đồ mô tả cách sắp xếp giá sách của mình.
Giá sách của em có 3 ngăn. Em sắp xếp giá sách của mình theo 3 thể loại sách như sau:
Có 7 học sinh nữ và 3 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để:
a) Sắp xếp tùy ý.
b) Các bạn nam ngồi cạnh nhau và các bạn nữ ngồi cạnh nhau.
c) 3 học sinh nam ngồi kề nhau.
d) Không có 2 bạn nam nào ngồi cạnh nhau.
a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)
b: TH1: 3 nam 2 nữ
=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)
TH2: 2 nam 3 nữ
=>Số cách xếp là: 2!*3!*2!(cách)
TH3: 1 nam 4 nữ
=>Số cách xếp là 1!*4!*2!(cách)
TH4: 0 nam 5 nữ
=>Số cách xếp là 5!(cách)
=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)
c: Số cách chọn 2 nữ trong 7 nữ là:
\(C^2_7\left(cách\right)\)
Số cách xếp 3 nam và 2 nữ là:
\(3!\cdot3!\left(cách\right)\)
=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)
Có bao nhiêu cách xếp chỗ cho 4 bạn nữ và 6 bạn nam ngồi vào 10 ghế mà không có hai bạn nữ nào ngồi cạnh nhau, nếu
a) Ghế sắp thành hàng ngang?
b) Ghế sắp quanh một bàn tròn?
a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.
Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.
Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có cách.
Xếp nữ vào 4 ghế đó. Có 4! cách.
Vậy có cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.
b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.
Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có cách.
Theo quy tắc nhân, có cách.
Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:
a. Họ ngồi chỗ nào cũng được?
b. Nam ngồi kề nhau, nữ ngồi kề nhau?
c. Nam và nữ ngồi xen kẻ nhau?
d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
a. Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông
Có bao nhiêu cách xếp chỗ cho 4 bạn nữ và 6 bạn nam ngồi vào 10 ghế mà không có hai bạn nữ nào ngồi cạnh nhau, nếu :
a) Ghế sắp thành hàng ngang ?
b) Ghế sắp quanh một bàn tròn
Câu 1. Có bao nhiêu cách sắp xếp 5 người ngồi vào một bàn dài có 5 chỗ ngồi? A. 5. B. 5 * 4 C. 5 * 5 D. 5!.
Sắp xếp 20 người vào 2 bàn tròn A, B phân biệt, mỗi bàn gồm 10 chỗ ngồi. Số cách sắp xếp là
A. C 20 10 . 9 ! . 9 ! 2
B. C 20 10 . 9 ! . 9 !
C. 2 C 20 10 . 9 ! . 9 !
D. C 20 10 . 10 ! . 10 !
• Giai đoạn 1: Chọn 10 người từ 20 người xếp vào bàn A nên có C 20 10 cách chọn người. Tiếp theo là 10 người vừa chọn này có 9! cách chọn chỗ ngồi. Vậy giai đoạn 1 có C 20 10 .9! cách.
• Giai đoạn 2: 10 người còn lại xếp vào bàn B, 10 người này có 9! cách chọn chỗ ngồi. Vậy giai đoạn 2 có 9! cách.
Vậy có tất cả C 20 10 . 9 ! . 9 ! cách thỏa mãn bài toán. Chọn B.
Sắp xếp 20 người vào 2 bàn tròn A, B phân biệt, mỗi bàn gồm 10 chỗ ngồi. Số cách sắp xếp là
A. C 20 10 .9!.9!
B. C 20 10 .10!.10!
C. C 20 10 . 9 ! . 9 ! 2
D. 2 C 20 10 .9!.9!
Chọn A
Giả sử khi xếp 10 người vào một bàn tròn, hai cách sắp xếp được xem là như nhau nếu cách này nhận được từ cách kia bằng cách xoay bàn đi một góc nào đó.
Bài toán trên được chia thành các công đoạn sau:
Công đoạn 1: Chọn 10 người trong 20 người đã cho để xếp vào bàn tròn A: có C 20 10 cách.
Công đoạn 2: Sắp xếp 10 người vừa chọn được ở công đoạn 1 vào bàn tròn A: có 9! cách.
Công đoạn 3: Sắp xếp 10 người còn lại vào bàn tròn B: có 9! cách.
Vậy số cách sắp xếp là: C 20 10 .9!.9! cách.
Có 2 người Mỹ, 3 người Anh, 3 người Pháp được sắp xếp vào một bàn tròn hội nghị. Hỏi có bao nhiêu cách sắp xếp sao cho:
a) Những người cùng quốc tịch ngồi cạnh nhau
b) Những người Pháp ngồi cạnh nhau
b) vì người mỹ và anh có thể dùng cùng 1 thứ tiếng